Source code for c4dynamics.rotmat.rotmat

import numpy as np
import sys 
sys.path.append('.')
# import c4dynamics as c4d 
from c4dynamics.utils.const import *  
from c4dynamics.utils.math import *  


[docs] def rotx(phi): ''' Generate a 3x3 Direction Cosine Matrix for a positive rotation about the x-axis by an angle :math:`\\phi` in radians. A right-hand rotation matrix about `x` is given by: .. math:: R = \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & cos(\\varphi) & sin(\\varphi) \\\\ 0 & -sin(\\varphi) & cos(\\varphi) \\end{bmatrix} Parameters ---------- phi : float or int The angle of rotation in radians. Returns ------- out : numpy.array A 3x3 rotation matrix representing the rotation about the x-axis. Examples -------- >>> rotx(0) # doctest: +NUMPY_FORMAT [[1 0 0] [0 1 0] [0 0 1]] >>> rotx(c4d.pi / 2) # doctest: +NUMPY_FORMAT [[1 0 0] [0 0 1] [0 -1 0]] >>> v1 = [0, 0, 1] >>> phi = 90 * c4d.d2r >>> rotx(phi) @ v1 # doctest: +NUMPY_FORMAT [0 1 0] >>> phi = 45 * c4d.d2r >>> rotx(phi) @ v1 # doctest: +NUMPY_FORMAT [0 0.707 0.707] ''' return np.array([[1, 0, 0], [0, cos(phi), sin(phi)], [0, -sin(phi), cos(phi)]])
[docs] def roty(theta): ''' Generate a 3x3 Direction Cosine Matrix for a positive rotation about the y-axis by an angle :math:`\\theta` in radians. A right-hand rotation matrix about `y` is given by: .. math:: R = \\begin{bmatrix} cos(\\theta) & 0& -sin(\\theta) \\\\ 0 & 1 & 0 \\\\ sin(\\theta) & 0 & cos(\\theta) \\end{bmatrix} Parameters ---------- theta : float or int The angle of rotation in radians. Returns ------- out : numpy.array A 3x3 rotation matrix representing the rotation about the y-axis. Examples -------- >>> roty(0) # doctest: +NUMPY_FORMAT [[1 0 0] [0 1 0] [0 0 1]] >>> roty(c4d.pi / 2) # doctest: +NUMPY_FORMAT [[0 0 -1] [0 1 0] [1 0 0]] >>> v1 = [0, 0, 1] >>> phi = 90 * c4d.d2r >>> roty(phi) @ v1 # doctest: +NUMPY_FORMAT [-1 0 0] >>> phi = 45 * c4d.d2r >>> roty(phi) @ v1 # doctest: +NUMPY_FORMAT [-0.707 0 0.707] ''' return np.array([[cos(theta), 0, -sin(theta)], [0, 1, 0], [sin(theta), 0, cos(theta)]])
[docs] def rotz(psi): ''' Generate a 3x3 Direction Cosine Matrix for a positive rotation about the z-axis by an angle :math:`\\psi` in radians. A right-hand rotation matrix about `y` is given by: .. math:: R = \\begin{bmatrix} cos(\\psi) & sin(\\psi) & 0 \\\\ -sin(\\psi) & cos(\\psi) & 0 \\\\ 0 & 0 & 1 \\end{bmatrix} Parameters ---------- psi : float or int The angle of rotation in radians. Returns ------- out : numpy.array A 3x3 rotation matrix representing the rotation about the z-axis. Examples -------- >>> rotz(0) # doctest: +NUMPY_FORMAT [[1 0 0] [0 1 0] [0 0 1]] >>> rotz(c4d.pi / 2) # doctest: +NUMPY_FORMAT [[0 1 0] [-1 0 0] [0 0 1]] >>> v1 = [0.707, 0.707, 0] >>> phi = 90 * c4d.d2r >>> rotz(phi) @ v1 # doctest: +NUMPY_FORMAT [0.707 -0.707 0] >>> phi = 45 * c4d.d2r >>> rotz(phi) @ v1 # doctest: +NUMPY_FORMAT [1 0 0] ''' return np.array([[cos(psi), sin(psi), 0], [-sin(psi), cos(psi), 0], [0, 0, 1]])
[docs] def dcm321(phi = 0.0, theta = 0.0, psi = 0.0): ''' Generate a 3x3 Direction Cosine Matrix (DCM) for a sequence of positive rotations around the axes in the following order: :math:`z`, then :math:`y`, then :math:`x`. The final form of the matrix is given by: .. math:: R = \\begin{bmatrix} c\\theta \\cdot c\\psi & c\\theta \\cdot s\\psi & -s\\theta \\\\ s\\varphi \\cdot s\\theta \\cdot c\\psi - c\\varphi \\cdot s\\psi & s\\varphi \\cdot s\\theta \\cdot s\\psi + c\\varphi \\cdot c\\psi & s\\varphi \\cdot c\\theta \\\\ c\\varphi \\cdot s\\theta \\cdot c\\psi + s\\varphi \\cdot s\\psi & c\\varphi \\cdot s\\theta \\cdot s\\psi - s\\varphi \\cdot c\\psi & c\\varphi \\cdot c\\theta \\end{bmatrix} where - :math:`c\\varphi \\equiv cos(\\varphi)` - :math:`s\\varphi \\equiv sin(\\varphi)` - :math:`c\\theta \\equiv cos(\\theta)` - :math:`s\\theta \\equiv sin(\\theta)` - :math:`c\\psi \\equiv cos(\\psi)` - :math:`s\\psi \\equiv sin(\\psi)` Parameters ---------- phi : float or int The angle in radian of rotation about `x`, default :math:`\\phi = 0`. theta : float or int The angle in radian of rotation about `y`, default :math:`\\theta = 0`. psi : float or int The angle in radian of rotation about `z`, default :math:`\\psi = 0`. Returns ------- out : numpy.array 3x3 Direction Cosine Matrix representing the combined rotation. Examples -------- The inertial velocity vector of an aircraft expressed in an inertial earth frame is given by: >>> v = [150, 0, 0] The attitude of the aircraft with respect to the inertial earth frame is given by the 3 Euler angles: .. math:: \\phi = 0 \\theta = 30 \\cdot {\\pi \\over 180} \\psi = 0 The velcoty expressed in body frame: >>> dcm321(phi = 0, theta = 30 * c4d.d2r, psi = 0) @ v # doctest: +NUMPY_FORMAT [129.9 0 75] ''' return rotx(phi) @ roty(theta) @ rotz(psi)
[docs] def dcm321euler(dcm): ''' Extract Euler angles (roll, pitch, yaw) from a Direction Cosine Matrix (DCM) of 3-2-1 order. The form of a 3-2-1 rotation matrix: .. math:: R = \\begin{bmatrix} c\\theta \\cdot c\\psi & c\\theta \\cdot s\\psi & -s\\theta \\\\ s\\varphi \\cdot s\\theta \\cdot c\\psi - c\\varphi \\cdot s\\psi & s\\varphi \\cdot s\\theta \\cdot s\\psi - c\\varphi \\cdot c\\psi & s\\varphi \\cdot c\\theta \\\\ s\\varphi \\cdot s\\theta \\cdot s\\psi + s\\varphi \\cdot s\\psi & s\\varphi \\cdot s\\theta \\cdot s\\psi - s\\varphi \\cdot c\\psi & c\\varphi \\cdot c\\theta \\end{bmatrix} where - :math:`c\\varphi \\equiv cos(\\varphi)` - :math:`s\\varphi \\equiv sin(\\varphi)` - :math:`c\\theta \\equiv cos(\\theta)` - :math:`s\\theta \\equiv sin(\\theta)` - :math:`c\\psi \\equiv cos(\\psi)` - :math:`s\\psi \\equiv sin(\\psi)` Parameters ---------- dcm : numpy.array 3x3 Direction Cosine Matrix representing a rotation. Returns ------- out : tuple A tuple containing Euler angles (yaw, pitch, roll) in degrees. Notes ----- Each set of Euler angles has a geometric singularity where two angles are not uniquely defined. It is always the second angle which defines this singular orientation: - Symmetric Set: 2nd angle is 0 or 180 degrees. For example the 3-1-3 orbit angles with zero inclination. - Asymmetric Set: 2nd angle is ±90 degrees. For example, the 3-2-1 angle of an aircraft with 90 degrees pitch. Examples -------- >>> dcm321euler(np.eye(3)) # doctest: +NUMPY_FORMAT (0, 0, 0) A rotation matrix that represents the attitude of an aircraft with respect to an inertial earth frame is given by: >>> BI = np.array([[ 0.866, 0, -0.5 ] ... , [ 0, 1, 0 ] ... , [ 0.5, 0, 0.866 ]]) >>> dcm321euler(BI) # doctest: +NUMPY_FORMAT (0, 30, 0) ''' psi = atan2(dcm[0, 1], dcm[0, 0]) * r2d theta = -asin(dcm[0, 2]) * r2d phi = atan2(dcm[1, 2], dcm[2, 2]) * r2d return phi, theta, psi
if __name__ == "__main__": import doctest, contextlib, os from c4dynamics import IgnoreOutputChecker, cprint # Register the custom OutputChecker doctest.OutputChecker = IgnoreOutputChecker tofile = False optionflags = doctest.FAIL_FAST if tofile: with open(os.path.join('tests', '_out', 'output.txt'), 'w') as f: with contextlib.redirect_stdout(f), contextlib.redirect_stderr(f): result = doctest.testmod(optionflags = optionflags) else: result = doctest.testmod(optionflags = optionflags) if result.failed == 0: cprint(os.path.basename(__file__) + ": all tests passed!", 'g') else: print(f"{result.failed}")