import numpy as np
import sys
sys.path.append('.')
# import c4dynamics as c4d
from c4dynamics.utils.const import *
from c4dynamics.utils.math import *
[docs]
def rotx(phi):
'''
Generate a 3x3 Direction Cosine Matrix for
a positive rotation about the x-axis by an angle :math:`\\phi` in radians.
A right-hand rotation matrix about `x` is given by:
.. math::
R = \\begin{bmatrix}
1 & 0 & 0 \\\\
0 & cos(\\varphi) & sin(\\varphi) \\\\
0 & -sin(\\varphi) & cos(\\varphi)
\\end{bmatrix}
Parameters
----------
phi : float or int
The angle of rotation in radians.
Returns
-------
out : numpy.array
A 3x3 rotation matrix representing the rotation about the x-axis.
Examples
--------
>>> rotx(0) # doctest: +NUMPY_FORMAT
[[1 0 0]
[0 1 0]
[0 0 1]]
>>> rotx(c4d.pi / 2) # doctest: +NUMPY_FORMAT
[[1 0 0]
[0 0 1]
[0 -1 0]]
>>> v1 = [0, 0, 1]
>>> phi = 90 * c4d.d2r
>>> rotx(phi) @ v1 # doctest: +NUMPY_FORMAT
[0 1 0]
>>> phi = 45 * c4d.d2r
>>> rotx(phi) @ v1 # doctest: +NUMPY_FORMAT
[0 0.707 0.707]
'''
return np.array([[1, 0, 0], [0, cos(phi), sin(phi)], [0, -sin(phi), cos(phi)]])
[docs]
def roty(theta):
'''
Generate a 3x3 Direction Cosine Matrix for
a positive rotation about the y-axis by an angle :math:`\\theta` in radians.
A right-hand rotation matrix about `y` is given by:
.. math::
R = \\begin{bmatrix}
cos(\\theta) & 0& -sin(\\theta) \\\\
0 & 1 & 0 \\\\
sin(\\theta) & 0 & cos(\\theta)
\\end{bmatrix}
Parameters
----------
theta : float or int
The angle of rotation in radians.
Returns
-------
out : numpy.array
A 3x3 rotation matrix representing the rotation about the y-axis.
Examples
--------
>>> roty(0) # doctest: +NUMPY_FORMAT
[[1 0 0]
[0 1 0]
[0 0 1]]
>>> roty(c4d.pi / 2) # doctest: +NUMPY_FORMAT
[[0 0 -1]
[0 1 0]
[1 0 0]]
>>> v1 = [0, 0, 1]
>>> phi = 90 * c4d.d2r
>>> roty(phi) @ v1 # doctest: +NUMPY_FORMAT
[-1 0 0]
>>> phi = 45 * c4d.d2r
>>> roty(phi) @ v1 # doctest: +NUMPY_FORMAT
[-0.707 0 0.707]
'''
return np.array([[cos(theta), 0, -sin(theta)], [0, 1, 0], [sin(theta), 0, cos(theta)]])
[docs]
def rotz(psi):
'''
Generate a 3x3 Direction Cosine Matrix for
a positive rotation about the z-axis by an angle :math:`\\psi` in radians.
A right-hand rotation matrix about `y` is given by:
.. math::
R = \\begin{bmatrix}
cos(\\psi) & sin(\\psi) & 0 \\\\
-sin(\\psi) & cos(\\psi) & 0 \\\\
0 & 0 & 1
\\end{bmatrix}
Parameters
----------
psi : float or int
The angle of rotation in radians.
Returns
-------
out : numpy.array
A 3x3 rotation matrix representing the rotation about the z-axis.
Examples
--------
>>> rotz(0) # doctest: +NUMPY_FORMAT
[[1 0 0]
[0 1 0]
[0 0 1]]
>>> rotz(c4d.pi / 2) # doctest: +NUMPY_FORMAT
[[0 1 0]
[-1 0 0]
[0 0 1]]
>>> v1 = [0.707, 0.707, 0]
>>> phi = 90 * c4d.d2r
>>> rotz(phi) @ v1 # doctest: +NUMPY_FORMAT
[0.707 -0.707 0]
>>> phi = 45 * c4d.d2r
>>> rotz(phi) @ v1 # doctest: +NUMPY_FORMAT
[1 0 0]
'''
return np.array([[cos(psi), sin(psi), 0], [-sin(psi), cos(psi), 0], [0, 0, 1]])
[docs]
def dcm321(phi = 0.0, theta = 0.0, psi = 0.0):
'''
Generate a 3x3 Direction Cosine Matrix (DCM) for a sequence of
positive rotations around the axes in the following order:
:math:`z`, then :math:`y`, then :math:`x`.
The final form of the matrix is given by:
.. math::
R = \\begin{bmatrix}
c\\theta \\cdot c\\psi
& c\\theta \\cdot s\\psi
& -s\\theta \\\\
s\\varphi \\cdot s\\theta \\cdot c\\psi - c\\varphi \\cdot s\\psi
& s\\varphi \\cdot s\\theta \\cdot s\\psi + c\\varphi \\cdot c\\psi
& s\\varphi \\cdot c\\theta \\\\
c\\varphi \\cdot s\\theta \\cdot c\\psi + s\\varphi \\cdot s\\psi
& c\\varphi \\cdot s\\theta \\cdot s\\psi - s\\varphi \\cdot c\\psi
& c\\varphi \\cdot c\\theta
\\end{bmatrix}
where
- :math:`c\\varphi \\equiv cos(\\varphi)`
- :math:`s\\varphi \\equiv sin(\\varphi)`
- :math:`c\\theta \\equiv cos(\\theta)`
- :math:`s\\theta \\equiv sin(\\theta)`
- :math:`c\\psi \\equiv cos(\\psi)`
- :math:`s\\psi \\equiv sin(\\psi)`
Parameters
----------
phi : float or int
The angle in radian of rotation about `x`, default :math:`\\phi = 0`.
theta : float or int
The angle in radian of rotation about `y`, default :math:`\\theta = 0`.
psi : float or int
The angle in radian of rotation about `z`, default :math:`\\psi = 0`.
Returns
-------
out : numpy.array
3x3 Direction Cosine Matrix representing the combined rotation.
Examples
--------
The inertial velocity vector of an aircraft expressed in an inertial earth frame is given by:
>>> v = [150, 0, 0]
The attitude of the aircraft with respect to the inertial earth frame is
given by the 3 Euler angles:
.. math::
\\phi = 0
\\theta = 30 \\cdot {\\pi \\over 180}
\\psi = 0
The velcoty expressed in body frame:
>>> dcm321(phi = 0, theta = 30 * c4d.d2r, psi = 0) @ v # doctest: +NUMPY_FORMAT
[129.9 0 75]
'''
return rotx(phi) @ roty(theta) @ rotz(psi)
[docs]
def dcm321euler(dcm):
'''
Extract Euler angles (roll, pitch, yaw) from a Direction Cosine Matrix (DCM) of 3-2-1 order.
The form of a 3-2-1 rotation matrix:
.. math::
R = \\begin{bmatrix}
c\\theta \\cdot c\\psi
& c\\theta \\cdot s\\psi
& -s\\theta \\\\
s\\varphi \\cdot s\\theta \\cdot c\\psi - c\\varphi \\cdot s\\psi
& s\\varphi \\cdot s\\theta \\cdot s\\psi - c\\varphi \\cdot c\\psi
& s\\varphi \\cdot c\\theta \\\\
s\\varphi \\cdot s\\theta \\cdot s\\psi + s\\varphi \\cdot s\\psi
& s\\varphi \\cdot s\\theta \\cdot s\\psi - s\\varphi \\cdot c\\psi
& c\\varphi \\cdot c\\theta
\\end{bmatrix}
where
- :math:`c\\varphi \\equiv cos(\\varphi)`
- :math:`s\\varphi \\equiv sin(\\varphi)`
- :math:`c\\theta \\equiv cos(\\theta)`
- :math:`s\\theta \\equiv sin(\\theta)`
- :math:`c\\psi \\equiv cos(\\psi)`
- :math:`s\\psi \\equiv sin(\\psi)`
Parameters
----------
dcm : numpy.array
3x3 Direction Cosine Matrix representing a rotation.
Returns
-------
out : tuple
A tuple containing Euler angles (yaw, pitch, roll) in degrees.
Notes
-----
Each set of Euler angles has a geometric singularity where
two angles are not uniquely defined.
It is always the second angle which defines this singular orientation:
- Symmetric Set: 2nd angle is 0 or 180 degrees. For example the 3-1-3 orbit angles with zero inclination.
- Asymmetric Set: 2nd angle is ±90 degrees. For example, the 3-2-1 angle of an aircraft with 90 degrees pitch.
Examples
--------
>>> dcm321euler(np.eye(3)) # doctest: +NUMPY_FORMAT
(0, 0, 0)
A rotation matrix that represents the attitude of an aircraft with respect to
an inertial earth frame is given by:
>>> BI = np.array([[ 0.866, 0, -0.5 ]
... , [ 0, 1, 0 ]
... , [ 0.5, 0, 0.866 ]])
>>> dcm321euler(BI) # doctest: +NUMPY_FORMAT
(0, 30, 0)
'''
psi = atan2(dcm[0, 1], dcm[0, 0]) * r2d
theta = -asin(dcm[0, 2]) * r2d
phi = atan2(dcm[1, 2], dcm[2, 2]) * r2d
return phi, theta, psi
if __name__ == "__main__":
import doctest, contextlib, os
from c4dynamics import IgnoreOutputChecker, cprint
# Register the custom OutputChecker
doctest.OutputChecker = IgnoreOutputChecker
tofile = False
optionflags = doctest.FAIL_FAST
if tofile:
with open(os.path.join('tests', '_out', 'output.txt'), 'w') as f:
with contextlib.redirect_stdout(f), contextlib.redirect_stderr(f):
result = doctest.testmod(optionflags = optionflags)
else:
result = doctest.testmod(optionflags = optionflags)
if result.failed == 0:
cprint(os.path.basename(__file__) + ": all tests passed!", 'g')
else:
print(f"{result.failed}")