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Abstract 

In this work, we study the stability of a proportional navigation guidance system by using a set 

of analytical and numerical tools in order to provide a complete investigation of the guidance 

loop, from acceleration command to miss distance.  

The guidance loop includes kinematics equations, guidance law and missile dynamics. The 

mathematical model that represents the system is nonlinear. This precise nonlinear model is 

the basis for any later analysis. 

Linearization of the proportional navigation guidance system is done around a reference 

nominal process which is an ideal trajectory. With the linearized model a more in-depth 

research can be achieved, via application of theoretical analyses. The derived linearized model 

is time dependent such that the coefficients of the state matrices are factors of the remaining 

flight-time 𝑡𝑔𝑜 (time-to-go).  

Stability analysis of terminal-systems is an extension to the Lyapunov theory, applied in the 

guidance system to cope with time-varying components in the state-space model. The 

dependence of the model on 𝑡𝑔𝑜 means that a singular point is present in the differential 

equation at the vicinity of the impact point (𝑡𝑔𝑜 → 0). Then the stability of the terminal-

systems, i.e. the subsystem that is governed by the differential equations of the line of sight 

angle rate 𝜔(𝑡) and the missile dynamics, is investigated in terms of unbounded increase of the 

flight time (𝑡𝑓 → ∞). The results are sufficient conditions for stability and asymptotic stability.  

To the extent that conditions regarding stability of the closed-loop subsystem exist, transition 

to the next step is admitted. The following investigation examines the stability of the subsystem 

that includes the missile-target range 𝜌(𝑡), whose final value forms the miss distance.  

In regards to the purpose of the guidance system, the miss distance analysis is of paramount 

importance. Since two integrators are present at the output of the closed-loop subsystem, for 

which conditions for stability were provided earlier, then the stability of the subsystem that 

includes 𝜌(𝑡) requires study of its own. In contrary to the analysis of the closed-loop system, 

where stability is examined with respect to a prior state, the analysis of the miss distance is 

with respect to stability in the sense of input-output behavior, which is the response to an initial 

state. Numerical analysis examines the operation of the guidance system in this regard. Once 

again, the results provide sufficient conditions for stability and asymptotic stability.  
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An extra product was yielded through the Lyapunov analysis which can be used as a general 

tool for the design of the guidance system. The solution of Lyapunov function yields parametric 

inequality, which, by comparing it to the numeric objectives of the system, may indicate 

appropriate values for realization.   

The paper is organized as follows: Chapter 1 covers the physical and mathematical background 

material required for study of the guidance loop. Chapter 2 is devoted to the system 

linearization. Chapters 3 and 4 present the closed-loop analysis (Lyapunov extension) and miss 

distance analysis of the guidance system respectively. In Appendix 1 is the program code of 

proportional navigation simulation.  
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1. Introduction to Proportional 

Navigation 
This chapter provides a background for some of the main topics in the missiles guidance field. 

The guidance law of interest in this research paper is proportional navigation. Therefore, by 

the nature of things, the proportional navigation law also stands in the focus of this chapter. 

The kinematics of missile-target pursuit and elementary notions of this discipline are presented. 

Then we turn to study the proportional navigation law, the guidance circle and representations 

of missile dynamics. 

1.1. Background 

Three stages form the missile flight – launch, midcourse and terminal. In the first stage the 

missile accelerates until burnout and positions itself in a stable flight toward the target. In the 

second stage, the missile flies most of the distance to the target. It is common in this stage to 

attempt to increase hit performances by trajectory shaping. The final stage is known as the 

terminal stage.  

In the last stage, accurate navigation should bring the missile close enough to the target to 

guarantee lethality. The navigation here is based on the relative motion of the missile and the 

target. The guidance system receives measures from a seeker and generates commands to be 

performed by the control system. The control system activates control surfaces motored by 

servos, to achieve the desired acceleration. 

The resultant acceleration is in the lateral plane of the missile body (see Figure 1.1). Hence, 

the guidance system deals only with displacement and deviations in the two lateral axes of the 

missile.  

The missile configuration in which a cylindrical body carries two sets of control surfaces, 

whether in symmetric form (90° separation between wings) or not (one set slightly rotated), is 

called skid-to-turn (STT). 

Maneuvering in the perpendicular lateral axes, in skid-to-turn configuration is decoupled by 

means of roll stabilization and is managed in each channel independently. 
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Figure 1.1: Guidance of a missile around the lateral axes in the Terminal stage. 

Depending on the engaged method, the guidance law may be given in terms of required 

acceleration or velocity direction, finally the demand is translated into lateral force and wings 

deflection.  

The Pure Pursuit method provides a guidance law that generates demands on velocity direction. 

In advance, a missile employing Pure Pursuit rotates its velocity direction to coincide along 

with the line of sight to the target. 

For an optimal law, such as Proportional Navigation, the command is given with respect to the 

line of sight rate, as elaborated in the next sections.  

1.2. Geometry and Kinematics  

In this section properties and formulas related to the two-dimensional kinematics of missile 

guidance are presented [1] [2]. First, let the following assumptions:  

a.1. The motion is two-dimensional. A common missile configuration is of two perpendicular 

channels, where the guidance of each channel is managed independently.  

a.2. The Missile flight is in the post-boost phase. Energy is no longer consumed and 

momentum conservation is satisfied. Thus in the longitudinal axis the missile speed is 

remaining constant. The target speed is also assumed to be constant.  

Target  

Longitudinal Axis 
Lateral Plane 

Line of Sight 

Missile 
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a.3. In the lateral plane acceleration (maneuver) is developed from guidance commands. 

Accelerations due to drag and gravity are ignored both in the longitudinal and lateral 

directions.  

a.4. Missile dynamics is ideal, specifically: 

 𝑎𝑚 = 𝑎𝑐 (1.1) 

Where 𝑎𝑐 is the lateral acceleration command as delivered by the control system and 𝑎𝑚 is the actual 

yielded lateral acceleration of the missile. 

a.5. By referring always to the center of mass, the motion of the bodies is described via 

kinematics of points. 

(Except assumption a.4, all the assumptions are valid also for the rest of the paper). 

 

Figure 1.2: Kinematics of planar motion in a moment after first line of sight evaluation.  

In the pursuit problem, the target and the missile position vectors are denoted by 𝑟𝑇 and 𝑟𝑚 

respectively. vT and vm are the target and the missile velocity vectors with constant magnitudes 

𝑣𝑇 and 𝑣𝑚, and with directions determined by the path angles 𝛾𝑇 and 𝛾𝑚, respectively.  

The line that connects 𝑟𝑇 and 𝑟𝑚 is the Line of Sight (LOS) and its vector representation is 𝑟: 

 
𝑟 = 𝑟𝑇 − 𝑟𝑚  (1.2) 

Where 𝑟 is the line of sight vector, 𝑟𝑇 and 𝑟𝑚 are the target position vector and the missile position 

vector respectively. 

𝑥 

𝜌 𝜆 

𝒗𝑚 

Missile 

𝑎𝑚 

𝛾𝑚 

𝛿 

𝑦 

𝒗𝑇 

Target 𝛾𝑇 
𝜆 

𝜃 

𝑎𝑇 
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The length of 𝑟 is the range 𝜌 and its angle is the LOS angle 𝜆. 𝜆 is measured with respect to 

an inertial reference axis, usually fixed to the direction of the first line of sight measure (see 

Figure 1.2). 

Elementary mechanics provides us with two velocities of planar motion – radial velocity: 

  

 𝜌̇ = 𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿 (1.3) 

That is the relative velocity along the line of sight – and the normal velocity: 

 𝜌 ⋅ 𝜆̇ = 𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃 − 𝑣𝑚 ⋅ 𝑠𝑖𝑛 𝛿 (1.4) 

That is the relative velocity perpendicular to the line of sight.  

Where 𝜌̇ and 𝜆̇ are the first time-derivative of the LOS range and the LOS angle respectively. 𝑣𝑇 and 

𝑣𝑚 are the constant magnitudes of the target and the missile velocities. 𝜃 is the target aspect angle that 

formed by the target velocity and the LOS and 𝛿 is the missile lead angle that formed by the missile 

velocity and the LOS.  

For the Cartesian frame of coordinates taken as fixed and inertial, the components of the line 

of sight vector 𝑟 are the projections of 𝜌 through 𝜆: 

 

𝑟𝑥 = 𝜌 ⋅ 𝑐𝑜𝑠 𝜆 

𝑟𝑦 = 𝜌 ⋅ 𝑠𝑖𝑛 𝜆 
(1.5) 

Where 𝑟𝑥 is the component of the line of sight vector 𝑟 on the 𝑥 axis, 𝑟𝑦 is the component of the line of 

sight vector 𝑟 on the 𝑦 axis, 𝜌 is the magnitude of 𝑟 and 𝜆 is its angle with 𝑥 axis.  

The acceleration normal to the path in non-uniform motion, yields the terms for the target and 

the missile path angles: 

 

𝛾̇𝑇 = 𝑎𝑇/𝑣𝑇 

𝛾̇𝑚 = 𝑎𝑚/𝑣𝑚 
(1.6) 

Where 𝛾𝑇 is the target path angle, 𝛾𝑚 is the missile flight path angle, 𝑎𝑇 target acceleration 

perpendicular to the target velocity, 𝑎𝑚 missile acceleration perpendicular to the missile velocity, 𝑣𝑇 

and 𝑣𝑚 are the constant magnitudes of the target and the missile velocities.  

The angles 𝜃 and 𝛿 that appear in (1.3) and (1.4) are known as the aspect angle and the lead 

angle. 𝜃 formed by the target velocity and the line of sight and 𝛿 by the missile velocity and 

the line of sight (Figure 1.2): 
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𝜃 = 𝛾𝑇 − 𝜆 

𝛿 = 𝛾𝑚 − 𝜆 
(1.7) 

Where 𝜃 is the target aspect angle and 𝛿 missile lead angle, 𝛾𝑇 and 𝛾𝑚 are target and missile path angles 

respectively, 𝜆 LOS angle.  

For the missile to be on a collision course with the target (see section 2.1 in chapter 2), the law 

of sines determines that the lead angle has to satisfy:  

 
𝛿 = 𝑠𝑖𝑛−1 (

𝑣𝑇
𝑣𝑚
⋅ 𝑠𝑖𝑛 𝜃) (1.8) 

Where 𝛿 missile lead angle, 𝜃 target aspect angle, 𝑣𝑇 and 𝑣𝑚 are the target and the missile constant 

velocities. 

In practice the lead angle is different due to instruments limitations and biases. In this case the 

lead angle is separated into two components, one is said to be the correct lead angle and the 

second the heading error: 

 
𝛿 = 𝑠𝑖𝑛−1 (

𝑣𝑇
𝑣𝑚
⋅ 𝑠𝑖𝑛 𝜃) + 𝛿𝑒𝑟𝑟 (1.9) 

Where 𝛿 missile lead angle, 𝜃 target aspect angle, 𝑣𝑇 and 𝑣𝑚 are the target and the missile constant 

velocities, 𝛿𝑒𝑟𝑟 is the heading error. 

The guidance effectiveness of a pursuit is usually evaluated with respect to the initial heading 

error 𝛿𝑒𝑟𝑟.  

Let the LOS angle rate 𝜆̇ = 𝜔 and substitute (1.7) for 𝜃 and 𝛿 in (1.4): 

 
𝜌 ⋅ 𝜔 = 𝑣𝑇 ⋅ 𝑠𝑖𝑛(𝛾𝑇 − 𝜆) − 𝑣𝑚 ⋅ 𝑠𝑖𝑛(𝛾𝑚 − 𝜆) (1.10) 

Where 𝜌 is the LOS range and 𝜔 the LOS angle rate, 𝜆 LOS angle, 𝑣𝑇 and 𝑣𝑚 are the target and the 

missile constant velocities, 𝛾𝑇 is the target path angle, 𝛾𝑚 is the missile flight path angle. 

Differentiation of both sides with respect to time yields:  

 

𝜌 ⋅ 𝜔̇ + 𝜌̇ ⋅ 𝜔 = 𝑣𝑇 ⋅ 𝛾̇𝑇 ⋅ 𝑐𝑜𝑠(𝛾𝑇 − 𝜆) − 𝑣𝑚 ⋅ 𝛾̇𝑚 ⋅ 𝑐𝑜𝑠(𝛾𝑚 − 𝜆)

+ 𝜆̇ ⋅ 𝑣𝑚 ⋅ 𝑐𝑜𝑠(𝛾𝑚 − 𝜆) − 𝜆̇ ⋅ 𝑣𝑇 ⋅ 𝑐𝑜𝑠(𝛾𝑇 − 𝜆)⏟                            
−𝜔⋅𝜌̇

  (1.11) 
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Where 𝜌 is the LOS range and 𝜔 the LOS angle rate, 𝜆 LOS angle, 𝑣𝑇 and 𝑣𝑚 are the target and the 

missile constant velocities, 𝛾𝑇 is the target path angle, 𝛾𝑚 is the missile flight path angle. 

The two last terms in (1.11) sum to −𝜔 ⋅ 𝜌̇, the expressions 𝑣𝑇 ⋅ 𝛾̇𝑇 and 𝑣𝑚 ⋅ 𝛾̇𝑚 are equal 𝑎𝑇 

and 𝑎𝑚 as in (1.6), hence the first time-derivative of the LOS angle rate gets the last form: 

 
𝜔̇ =

1

𝜌
[−2 ⋅ 𝜔 ⋅ (𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿) + 𝑎𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑎𝑚 ⋅ 𝑐𝑜𝑠 𝛿] (1.12) 

Where 𝜔 is the missile-target angular velocity (LOS rate), 𝜌 is the LOS range, 𝑎𝑇 and 𝑎𝑚 are the target 

and the missile accelerations, 𝜃 is the target aspect angle, 𝛿 missile lead angle. 

Having developed the self-contained equations of motion for the missile-target pursuit, the total 

system is now given by the following set of differential equations: 

 

𝜌̇ = 𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿 

𝜆̇ = 𝜔 

𝜔̇ = −2 ⋅ 𝜔 ⋅ (𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿)/𝜌 + 𝑎𝑇 ⋅ 𝑐𝑜𝑠 𝜃 /𝜌

− 𝑎𝑚 ⋅ 𝑐𝑜𝑠 𝛿 /𝜌 

𝛾̇𝑇 = 𝑎𝑇/𝑣𝑇 

𝛾̇𝑚 = 𝑎𝑚/𝑣𝑚 

(1.13) 

Where 𝜌 is the line of sight range, 𝜆 is the line of sight angle, 𝜔 is the line of sight angle rate, 𝑣𝑇 target 

constant velocity magnitude, 𝑣𝑚 missile constant velocity magnitude, 𝛾𝑇 target path angle, 𝛾𝑚 missile 

flight path angle, 𝜃 is the target aspect angle and 𝛿 missile lead angle, 𝑎𝑇 and 𝑎𝑚 are the accelerations 

of the target and the missile respectively. 

Notes on (1.13): 

n.1. Equations (1.13) form a complete mathematical model of the relative motion of missile 

and target in two dimensions subject to restrains a.1 – a.5.  

n.2. Evaluation of (1.13) have to be preceded by the calculation of 𝜃 and 𝛿 by the algebraic 

equations (1.7). 

n.3. Expressions for initial conditions embedded in previous equations. 𝜌0 and 𝜆0 are given 

by the initial magnitude of the LOS vector 𝑟 and its angle with 𝑥 axis. 𝜔0 is calculated 

by (1.4). Initial condition for 𝛾𝑇 = 𝜃0 + 𝜆0 entails knowledge of the target velocity 

vector. For the missile path angle, 𝛾𝑚0 = 𝛿0 + 𝜆0, (1.8) has to be calculated.   
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1.3. Proportional Navigation 

So far the equations of motion and the geometry with respect to the missile guidance were 

described, but not much was said about the law by which the missile may hit the target. This is 

the place where the Proportional Navigation (PN) is introduced and provides a guidance law 

to lead the missile towards collision with the target [3].  

Proportional navigation seeks to preserve a constant line of sight angle and thus to place the 

missile in a collision course with the target. By providing the control system a reference signal 

proportional to the line of sight rate, the guidance system rotates the missile velocity vector 

with the line of sight. Thus an acceleration command form of the PN law is [2]: 

 
𝑎𝑐 = 𝑁 ⋅ 𝑣𝑚 ⋅ 𝜔 (1.14) 

Where 𝑎𝑐 is a lateral acceleration command needed to perform by the control system, 𝑁 constant 

navigation gain, 𝑣𝑚 missile velocity and 𝜔 the line of sight angle rate.  

With respect to the pursuit model (1.13), if the missile dynamics is assumed ideal (1.1) then 𝑎𝑐 

is replacing 𝑎𝑚 directly. If nonideal dynamics is considered, then 𝑎𝑐 is standing for the missile 

acceleration 𝑎𝑚,, through the model that represents the missile dynamics. In any case, since the 

acceleration command (1.14) is algebraic with respect to 𝜔, its calculation has to come before 

the calculation of the differential equations (1.13) (see also note n.2). 

The type of law presented in (1.14), and will be used further on in this work, is called Pure 

Proportional Navigation (PPN) and in it commands are applied perpendicular to the missile 

velocity (see Figure 1.2). Another common approach is the True Proportional Navigation 

(TPN) in which commands are given with respect to the line of sight.  

Experiments show that values for the navigation gain 𝑁 (1.14) are preferred when taken 

between 3 and 5, and in any way, no lower than 2. The higher the gain is, the flight path is 

more gentle and slightly closer to the region bounded around the initial conditions. However a 

higher gain means also large maneuvering capabilities [3].  

Proportional navigation with 𝑁 = 3 demonstrated to be the optimal solution for the pursuit 

problem regarding non-maneuvering targets, when the cost function is minimum miss distance 

[4]. The development of guidance laws with respect to optimal control, is currently the subject 

of a large study with the purpose of providing solutions for modern problems.  
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Among other problems, there are the interceptions inside and outside the atmosphere. A work 

that studies exo-atmospheric pursuit achieves solutions [5] by associating a terminal cost 

function with the constrained kinematics. The cost function is defined in the sense of miss 

distance for a prescribed final time 𝑡𝑓 (see section 2.1). Solution to the optimal problem yields 

guidance strategy in terms of zero effort miss (ZEM), namely the miss that would be obtained 

by stopping to produce commands from the current to the final time. 

A study of endo-atmospheric interception for a missile having nonlinear dynamics and 

Gaussian measurement noise [6], proposes an integrated estimation-guidance approach on the 

basis of numerically solving the Hamilton-Jacobi equation associated with the stochastic 

optimization problem. 

Another paper [7] studies the advantage of optimal guidance laws with respect to traditional 

ones given mismatches between the actual dynamics of the interceptor and the model in design. 

The results are given in terms of stability, in the time domain (Lyapunov), and the frequency 

domain (circle criterion).  

The following sections deal with issues concerning missile guidance as a system.  

1.4. The Guidance Loop 

The complete missile is composed of several subsystems. Each subsystem is characterized by 

unique dynamics such as damping-ratio or time-constant. Analyses of missile guidance have 

to consider these properties in order to correctly model the system. Only then can the right 

approach to analyze the system be determined. Accordingly, the guidance loop is presented 

here in its full scale, namely a nonlinear model with nonideal dynamics. 

 
Figure 1.3: Proportional navigation guidance loop.  

Control 

System 

Guidance 

Law 
Seeker 

Kinematics 

𝑎𝑐 𝜆̇ 𝑎𝑚 

Tracking 

Filter 
𝜆 
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Target detection by the homing head – seeker – initiates the guidance loop. According to (1.14) 

proportional navigation requires information about the line of sight angular rate to produce 

guidance commands. To generate this datum, readings of the seeker are delivered to the 

tracking filter to estimate the line of sight angle and its derivative. The guidance law develops 

lateral acceleration commands. The flight control system activates control surfaces to force the 

missile to track the commands. Each cycle results in missile motion. The achieved motion alters 

the relative position between the missile and the target. This loop-action continues up until 

final conditions [1] are met. 

The guidance system in Figure 1.3 can also be presented in a state-manner: 

 

Figure 1.4: Concrete description of a guidance loop composed of guidance law block (left dashed box) and 

missile dynamics block (right).  

It is convenient to distinguish between the two blocks of the guidance loop: one block includes 

the guidance components, and the other one represents the missile dynamics.  

1.4.1. Guidance Law Block 

The guidance law block includes the relation of the accelerations to the line of sight, as it is 

reflected in the equations of motion, and therefore it is inherently nonlinear time-dependent 

(expressed in Figure 1.4 with the operator 𝑇(𝑡)).  

Recall the kinematic formulation that connects a missile motion with the line of sight angle 

rate (1.11): 

 𝜌 ⋅ 𝜔̇ + 2 ⋅ 𝜌̇ ⋅ 𝜔 = 𝑎𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑎𝑚 ⋅ 𝑐𝑜𝑠 𝛿 (1.11) 

Where 𝜌 is the line of sight range, 𝜔 is the line of sight angle rate, 𝜃 is target aspect angle and 𝛿 missile 

lead angle, 𝑎𝑇 and 𝑎𝑚 are the lateral accelerations of the target and the missile respectively. 

𝑎𝑇 𝜆̇ 

𝑇(𝑡) 

𝑥̇𝑑 𝑎𝑚 

𝑁 ⋅ 𝑣𝑚 𝑏𝑑 ∫  

𝐴𝑑 

𝑐𝑑 

𝑎𝑐 

+ 
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Since the variables 𝜌, 𝜔, 𝜃 and 𝛿 change quickly with time, they form a relation between the 

input and the output of the guidance block, that depends on time. Then 𝑇(𝑡) in Figure 1.4, is 

an operator that connects the missile acceleration and the LOS rate. The expression for 𝑇(𝑡) 

may be found in the rearrangement of (1.11). 

Important to notice that since a missile objective is to close the range as fast as possible, the 

variables that take place at the guidance law block change quickly in a short and finite time, 

and indeed the guidance system as a whole is characterized by a dependence on regression of 

finite time, as will be discussed later. 

As mentioned, the guidance block stands on the kinematical relation as reflected by the 

equations of motion. Therefore as a model this block is dominated by the five variables of 

equations (1.13). For convenience, let us write this set of equations here again: 

 

𝜌̇ = 𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿 

𝜆̇ = 𝜔 

𝜔̇ = −2 ⋅ 𝜔 ⋅ (𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿)/𝜌 + 𝑎𝑇 ⋅ 𝑐𝑜𝑠 𝜃 /𝜌

− 𝑎𝑚 ⋅ 𝑐𝑜𝑠 𝛿 /𝜌 

𝛾̇𝑇 = 𝑎𝑇/𝑣𝑇 

𝛾̇𝑚 = 𝑎𝑚/𝑣𝑚 

(1.13) 

Where 𝜌 the line of sight range, 𝜆 is the line of sight angle, 𝜔 is the line of sight angle rate, 𝑣𝑇 target 

constant velocity magnitude, 𝑣𝑚 missile constant velocity magnitude, 𝛾𝑇 target path angle, 𝛾𝑚 missile 

flight path angle, 𝜃 is target aspect angle and 𝛿 missile lead angle, 𝑎𝑇 and 𝑎𝑚 are the accelerations of 

the target and the missile respectively. 

Then the guidance block is composed of five variables [𝜌 𝜆 𝜔 𝛾𝑇 𝛾𝑚]. 

1.4.2. Missile Dynamics Block 

Missile dynamics includes autopilot, seeker and tracking filters, all these subsystems’ 

coefficients are mostly constant, and therefore may be represented by a linear time-invariant 

(LTI) model.  

Although each of the subsystems, namely autopilot, seeker and tracking filters, justifies a 

transfer function of some order for its own, it is common to study the effects of the dynamics 

by considering an overall, one linear transfer function. It transfers the desired acceleration 𝑎𝑐, 

as produced by the guidance unit, to actual missile acceleration 𝑎𝑚, as performed after the 
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course that was done from the line of sight measure and until the fins deflection and the 

consequent lift force, that changes the missile lateral acceleration.  

The general form of transfer function for dynamics of 𝑛𝑡ℎ order is given by [8]: 

 𝑎𝑚 =
𝑏𝑛−1 ⋅ 𝑠

𝑛−1 +⋯+ 𝑏1 ⋅ 𝑠 + 1 

𝑎𝑛 ⋅ 𝑠
𝑛 + 𝑎𝑛−1 ⋅ 𝑠

𝑛−1 +⋯+ 𝑎1 ⋅ 𝑠 + 1
⋅ 𝑎𝑐 (1.15) 

Where 𝑎𝑚 is the missile actual achieved lateral acceleration, 𝑎𝑐 lateral acceleration command as given 

by the navigation law, 𝑠 Laplace transform variable, 𝑎𝑖 coefficients of the characteristic polynomial of 

the transfer function and 𝑏𝑖 coefficients of the numerator, 𝑛 is the number of the highest exponent of 

the characteristic polynomial. 

The missile dynamics represented in (1.15) by a transfer function, may also be represented by 

the following state space form (Figure 1.4): 

 
𝑥̇𝑑 = 𝐴𝑑 ⋅ 𝑥𝑑 + 𝑏𝑑 ⋅ 𝑎𝑐 

𝑎𝑚 = 𝑐𝑑 ⋅ 𝑥𝑑 
(1.16) 

Where 𝐴𝑑 ∈ 𝑅
𝑛×𝑛, 𝑏𝑑 ∈ 𝑅

𝑛×1, 𝑐𝑑 ∈ 𝑅
1×𝑛 are state matrix and vectors composed of the coefficients 

𝑎𝑖 and 𝑏𝑖 of the transfer function (1.15), 𝑥𝑑 ∈ 𝑅
𝑛×1 state vector of the dynamic variables, 𝑎𝑐 and 𝑎𝑚 

are input and output lateral acceleration respectively. The equation is subject to the initial conditions 

𝑥𝑑 = 𝑥𝑑0 at 𝑡 = 𝑡0.  

The variables that dominate this block of the system are dependent on the model that represents 

the dynamics of the missile. It may begin with a first order model where only one variable, that 

is the missile lateral acceleration, is considered, and go to a high arbitrary order of the missile 

dynamic states [9]. The number of variables that represent the dynamics block is denoted by 

𝑛. 

In order to maintain the gain of the guidance law (see section 1.3) the different components of 

the missile dynamics have to be matched in such a way that the overall gain from input to 

output will be: 

 

𝑎𝑚
𝑎𝑐
=  𝑐𝑑 ⋅ (𝑠 ⋅ 𝐼 − 𝐴𝑑)

−1 ⋅ 𝑏𝑑|𝑠=0 = 1 (1.17) 

Where 𝑎𝑐 missile lateral acceleration input command and 𝑎𝑚 missile lateral output acceleration. 𝐴𝑑 ∈

𝑅𝑛×𝑛, 𝑏𝑑 ∈ 𝑅
𝑛×1, 𝑐𝑑 ∈ 𝑅

1×𝑛 are state matrix and vectors of the missile dynamics, 𝑠 Laplace variable 

and 𝐼 is unit matrix of order 𝑛.  
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When an ideal dynamics assumption is made, the connection between the input acceleration 

command and the output actual acceleration is direct, that is to say 𝐴𝑑 , 𝑏𝑑 and 𝑐𝑑 reset and a 

second route connects 𝑎𝑚 to 𝑎𝑐 through a variable 𝑑𝑑, which equals 1. As stated in (1.1): 

 
𝑎𝑚 = 𝑎𝑐  (1.1) 

Where 𝑎𝑐 missile lateral acceleration command and 𝑎𝑚 missile actual achieved lateral acceleration.  

1.4.3. State Space Model 

To describe the model of the guidance system in more detail, let the state variables be: 

 

𝑥1 = 𝜌 
𝑥2 = 𝜆 
𝑥3 = 𝜔 
𝑥4 = 𝛾𝑇 
𝑥5 = 𝛾𝑚 

(1.18) 

Where [𝑥1, … , 𝑥5] = [𝜌, 𝜆, 𝜔, 𝛾𝑇 , 𝛾𝑚] are state variables of the system, 𝜌 line of sight range, 𝜆 line of 

sight angle, 𝜔 LOS angle rate, 𝛾𝑇 and 𝛾𝑚 path angles of target and missile respectively.  

The variables (1.18) with the missile dynamics vector form the state vector 𝑥 of the guidance 

system: 

 
𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥𝑑]𝑇 (1.19) 

Where 𝑥 ∈ 𝑅(5+𝑛)×1 is the guidance system state vector, [𝑥1, … , 𝑥5] = [𝜌, 𝜆, 𝜔, 𝛾𝑇 , 𝛾𝑚]  are the  state 

variables of motion as detailed in (1.18), 𝑥𝑑 ∈ 𝑅
𝑛×1 is the state vector of the missile dynamics (1.16), 

superscript 𝑇 refers to the transpose operator.  

The number of states 5 + 𝑛 in the vector (1.19) originates in the five variables of motion of the 

guidance block, plus 𝑛 variables of the missile dynamics (see previous sections). 

Putting together (1.13) and (1.16), the complete model of the guidance system with state vector 

𝑥 (1.19) receives its final form: 

 

𝑥̇1 = 𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿 

𝑥̇2 = 𝑥3 

𝑥̇3 = −2 ⋅ 𝑥3 ⋅ (𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿)/𝑥1 + 𝑎𝑇 ⋅ 𝑐𝑜𝑠 𝜃 /𝑥1
− 𝑐𝑑 ⋅ 𝑥𝑑 ⋅ 𝑐𝑜𝑠 𝛿 /𝑥1 

𝑥̇4 = 𝑎𝑇/𝑣𝑇 

𝑥̇5 = 𝑐𝑑 ⋅ 𝑥𝑑/𝑣𝑚 

(1.20) 
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𝑥̇𝑑 = 𝐴𝑑 ⋅ 𝑥𝑑 + 𝑏𝑑 ⋅ 𝑎𝑐 

Where 𝑥 ∈ 𝑅(𝑛+5)×1 is the guidance system state vector,  

[𝑥1, … , 𝑥5] = [𝜌, 𝜆, 𝜔, 𝛾𝑇 , 𝛾𝑚] are the state variables of motion, 𝑥𝑑 ∈ 𝑅
𝑛×1 is the state vector of the 

missile dynamics with state matrix 𝐴𝑑 ∈ 𝑅
𝑛×𝑛 and vectors 𝑏𝑑 ∈ 𝑅

𝑛×1, 𝑐𝑑 ∈ 𝑅
1×𝑛, 𝑣𝑇 and 𝑣𝑚 target 

and missile constant velocities, 𝜃 and 𝛿 target aspect angle and missile lead angle, 𝑎𝑇 is the target 

acceleration and 𝑎𝑐 missile acceleration command.  

Recall also that the calculation of the right hand side of (1.20) must be preceded by the 

evaluation of 𝜃, 𝛿 and 𝑎𝑐 by (1.7) and (1.14): 

 

𝜃 = 𝛾𝑇 − 𝜆 

𝛿 = 𝛾𝑚 − 𝜆 

𝑎𝑐 = 𝑁 ⋅ 𝑣𝑚 ⋅ 𝜔 

(1.21) 

Where 𝜃 is the target aspect angle and 𝛿 missile lead angle, 𝛾𝑇 and 𝛾𝑚 are target and missile path angles 

respectively, 𝜆 LOS angle, 𝑎𝑐 is an acceleration command needed to perform by the control system, 

𝑁 constant navigation gain, 𝑣𝑚 missile velocity and 𝜔 the line of sight angle rate. 

The variables 𝜃, 𝛿 and 𝑎𝑐 of the algebraic equations (1.21) form the vector 𝑥𝑎: 

 
𝑥𝑎 = [𝜃 𝛿 𝑎𝑐]

𝑇 (1.22) 

Where 𝑥𝑎 ∈ 𝑅
3×1 is the vector of the dependent variables of algebraic equations (1.21), 𝜃 is the target 

aspect angle and 𝛿 missile lead angle, 𝑎𝑐 missile acceleration command, superscript 𝑇 indicates the 

transpose operator.  

Initial conditions to the motion variables in (1.20) are collected from the equivalent 

formulations, as described at note n.3 of section 1.2. Let's add the initial conditions of the 

dynamics, 𝑥𝑑0, and the result is the set of initial conditions required for the calculation of the 

state equations (1.20): 

 

𝜌0 = √𝑟𝑥0
2 + 𝑟𝑦0

2  

𝜆0 = 𝑠𝑖𝑛
−1(𝑟𝑦0/𝜌) 

𝜔0 = (𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃0 − 𝑣𝑚 ⋅ 𝑠𝑖𝑛 𝛿0)/𝜌0 

𝛾𝑇0 = 𝜃0 + 𝜆0 

𝛾𝑚0 = 𝑠𝑖𝑛
−1(𝑠𝑖𝑛(𝜃0) ⋅ 𝑣𝑇/𝑣𝑚) + 𝛿𝑒𝑟𝑟 + 𝜆0 

𝑥𝑑0 = 𝑔𝑖𝑣𝑒𝑛 

(1.23) 



 

14 

  

Where subscript 0 stands for initial time 𝑡0, 𝜌 is the line of sight range, 𝑟𝑥 and 𝑟𝑦 are the components of 

the relative position 𝑟 in 𝑥 and 𝑦̂ directions respectively, 𝜆 is the line of sight angle, 𝜔 line of sight 

angle rate, 𝑣𝑇 and 𝑣𝑚 target and missile velocities, 𝛾𝑇 and 𝛾𝑚 target and missile path angles, 𝜃 target 

aspect angle and 𝛿 missile lead angle, 𝛿𝑒𝑟𝑟 initial heading error – the deviation of the missile lead angle 

from the correct direction (see 1.8), 𝑥𝑑 state vector of missile dynamics of 𝑛𝑡ℎ order.  

Finally let 𝑓 be a functions-vector that represents the right hand side of the ordinary nonlinear 

differential equations (1.20):  

 

 
𝑥̇ = 𝑓(𝑥, 𝑎𝑐, 𝑎𝑇) (1.24) 

Where 𝑥, 𝑥̇ ∈ 𝑅(5+𝑛)×1 are the guidance system state vector and its derivative, 𝑓 ∈ 𝑅(5+𝑛)×1 is a vector 

of functions detailed in (1.20), 𝑎𝑇 is the target acceleration and 𝑎𝑐 missile acceleration command.  

In the same manner 𝑓𝑎(𝑥𝑎) represents the right hand side of the algebraic equations (1.22).  

Equations (1.20) are highly nonlinear. Due to the analyzation difficulty of (1.20), a design 

objective is to linearize the equations. In the next section, (1.20) will be expanded into a Taylor 

series about a nominal trajectory at the final stage of a missile’s course, where proportional 

navigation is engaged. 

1.5. Nonlinear System – Examples  

For verification and demonstration of the results here and in later examples, we are going to 

use three sets of missile dynamics and parameters. In all of them the nonlinear 2D kinematic 

model is engaged. The three types of dynamics are the ideal, first order and second order 

dynamics. The value of the following parameters is fixed unless mentioned explicitly: 

𝑣𝑚 = 400 𝑚/𝑠, 𝑣𝑇 = 200 𝑚/𝑠, 𝑎𝑇 = 0, 𝑁 = 3.  

Ideal Dynamics 

Algebraic equations:  

 

𝜃 = 𝛾𝑇 − 𝜆 

𝛿 = 𝛾𝑚 − 𝜆 

𝑎𝑐 = 400 ⋅ 𝑁 ⋅ 𝜔 

(1.25) 

Differential equations: 
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𝑥̇1 = 200 ⋅ 𝑐𝑜𝑠 𝜃 − 400 ⋅ 𝑐𝑜𝑠 𝛿 

𝑥̇2 = 𝑥3 

𝑥̇3 = [−2 ⋅ 𝑥3 ⋅ (200 ⋅ 𝑐𝑜𝑠 𝜃 − 400 ⋅ 𝑐𝑜𝑠 𝛿) − 𝑎𝑐 ⋅ 𝑐𝑜𝑠 𝛿]/𝑥1  

𝑥̇4 = 0 

𝑥̇5 = 𝑎𝑐/400 

(1.26) 

Initial conditions for the differential equations: 

 

𝑥10 = 𝑥𝑇 

𝑥20 = 0 

𝑥30 = (200 ⋅ 𝑠𝑖𝑛 𝜃0 − 400 ⋅ 𝑠𝑖𝑛 𝛿0)/𝑥𝑇  

𝑥40 = 𝜃0 

𝑥50 = 𝛿0 

(1.27) 

Initial condition values are provided on the basis of the following evaluations: 

 

𝜌0 = √𝑟𝑥0
2 + 𝑟𝑦0

2 = √(𝑥𝑇0 − 𝑥𝑚0)
2
+ (𝑦

𝑇0
− 𝑦

𝑚0
)
2
= 𝑥𝑇0 

𝜆0 = 𝑠𝑖𝑛
−1(𝑟𝑦0/𝜌) = 0 

𝜔0 = (𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃0 − 𝑣𝑚 ⋅ 𝑠𝑖𝑛 𝛿0)/𝜌0 = (200 ⋅ 𝑠𝑖𝑛 𝜃0 − 400 ⋅ 𝑠𝑖𝑛 𝛿0)/𝑥𝑇0 

𝛾𝑇0 = 𝜃0 + 𝜆0 = 𝜃0 

𝛾𝑚0
= 𝑠𝑖𝑛−1(⋅ 𝑣𝑇/𝑣𝑚 𝑠𝑖𝑛 𝜃0) + 𝛿𝑒𝑟𝑟 + 𝜆0 = 𝑠𝑖𝑛

−1 (
1

2
⋅ 𝑠𝑖𝑛 𝜃0)+ 𝛿𝑒𝑟𝑟 

(1.28) 

𝜆0 = 𝑠𝑖𝑛
−1(𝑟𝑦0/𝜌) = 0 is a result of the selection of a frame with 𝑥 axis aligned with the initial 

LOS (see Figure 1.2, Figure 1.5). 

1st Order Dynamics 

Based on the first order transfer function: 

 
𝑎𝑚 =

1

𝜏𝑚 ⋅ 𝑠 + 1
⋅ 𝑎𝑐 (1.29) 

Where 𝑎𝑚 is the missile actual acceleration at the lateral plane, 𝑎𝑐 PN command, 𝑠 Laplace transform 

variable and 𝜏𝑚 time-constant of the missile dynamics.  

The following equations are valid, algebraic equations:  

 

𝜃 = 𝛾𝑇 − 𝜆 

𝛿 = 𝛾𝑚 − 𝜆 

𝑎𝑐 = 400 ⋅ 𝑁 ⋅ 𝜔 

(1.30) 

Differential equations: 
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𝑥̇1 = 200 ⋅ 𝑐𝑜𝑠 𝜃 − 400 ⋅ 𝑐𝑜𝑠 𝛿 

𝑥̇2 = 𝑥3 

𝑥̇3 = [−2 ⋅ 𝑥3 ⋅ (200 ⋅ 𝑐𝑜𝑠 𝜃 − 400 ⋅ 𝑐𝑜𝑠 𝛿) − 𝑥6 ⋅ 𝑐𝑜𝑠 𝛿]/𝑥1  

𝑥̇4 = 0 

𝑥̇5 = 𝑥6/400 

𝑥̇6 = −𝑥6 𝜏𝑚⁄ + 𝑎𝑐 𝜏𝑚⁄   

(1.31) 

Differential equations initial conditions (see calculations in 1.27): 

 

𝑥10 = 𝑥𝑇 

𝑥20 = 0 

𝑥30 = (200 ⋅ 𝑠𝑖𝑛 𝜃0 − 400 ⋅ 𝑠𝑖𝑛 𝛿0)/𝑥𝑇  

𝑥40 = 𝜃0 

𝑥50 = 𝛿0 

𝑥60 = 𝑎𝑚0 

(1.32) 

2nd Order Dynamics 

Based on the second order transfer function: 

 𝑎𝑚 =
𝜔𝑛
2

𝑠2 + 2 ⋅ 𝜁 ⋅ 𝜔𝑛 ⋅ 𝑠 + 𝜔𝑛2
⋅ 𝑎𝑐 (1.33) 

Where 𝑎𝑚 is the missile actual acceleration at the lateral plane, 𝑎𝑐 PN command, 𝑠 Laplace transform 

variable. 𝜁 is the damping ratio and 𝜔𝑛 is the natural frequency of the missile dynamics.  

Algebraic equations:  

 

𝜃 = 𝛾𝑇 − 𝜆 

𝛿 = 𝛾𝑚 − 𝜆 

𝑎𝑐 = 400 ⋅ 𝑁 ⋅ 𝜔 

(1.34) 

Differential equations: 

 

𝑥̇1 = 200 ⋅ 𝑐𝑜𝑠 𝜃 − 400 ⋅ 𝑐𝑜𝑠 𝛿 

𝑥̇2 = 𝑥3 

𝑥̇3 = [−2 ⋅ 𝑥3 ⋅ (200 ⋅ 𝑐𝑜𝑠 𝜃 − 400 ⋅ 𝑐𝑜𝑠 𝛿) − 𝑥6 ⋅ 𝑐𝑜𝑠 𝛿]/𝑥1  

𝑥̇4 = 0 

𝑥̇5 = 𝑥6/400 

𝑥̇6 = 𝑥7  

𝑥̇7 = −𝜔𝑛
2 ⋅ 𝑥6 − 2 ⋅ 𝜁 ⋅ 𝜔𝑛 ⋅ 𝑥7 + 𝜔𝑛

2 ⋅ 𝑎𝑐 

(1.35) 

Differential equations initial conditions (see calculations in 1.27): 

 

𝑥10 = 𝑥𝑇 

𝑥20 = 0 
(1.36) 
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𝑥30 = (200 ⋅ 𝑠𝑖𝑛 𝜃0 − 400 ⋅ 𝑠𝑖𝑛 𝛿0)/𝑥𝑇  

𝑥40 = 𝜃0 

𝑥50 = 𝛿0 

𝑥60 = 𝑎𝑚0 

𝑥70 = 𝑥𝑑1 

Example 1 – Initial Heading Error 

The examples in this section examine the guidance system response for two types of challenges 

in initial conditions: heading error and target range. The ideal system and first order system 

with the governing equations (1.25)-(1.32) are used.  

Let the missile, located at the origin, employ proportional navigation. The target is not 

maneuvering, that is 𝑎𝑇 = 0. Additional details appear in Figure 1.5. 

 

Figure 1.5: Initial conditions and parameters for the examples in 1.5.  

Figure 1.6 is the acceleration command versus initial heading errors 𝛿𝑒𝑟𝑟0 and 2 ⋅ 𝛿𝑒𝑟𝑟0. The 

results imply that for the higher heading error (gray scales in the figures) the required 

acceleration to close the error in the velocity direction, is two times higher than the equivalent 

lower heading error.  

The figure presents also results for nonideal dynamics, which is simulated by a first order 

transfer function, in this case the achieved acceleration (𝑎𝑚) is not ideally as the acceleration 

command (𝑎𝑐). For the two cases of initial heading error, it is possible to see the actual missile 

acceleration marked by a dashed line. 

𝑥 

𝜌 𝒗𝑚 = 400𝑚/𝑠  

Missile 
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𝛿0 

𝑦 

𝒗𝑇 = 200𝑚/𝑠 

Target 

𝜃0 (𝑥𝑇0 , 0) 
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Figure 1.6: Acceleration histories of guidance system for two values of initial heading error 𝛿𝑒𝑟𝑟0 , for ideal 

system and for first order dynamics.  

Figure 1.7 is the trajectory extracted from the relative position vector 𝑟. In terms of time series, 

the line begins at the right lower corner where the distance between the missile and the target 

is the largest. Then the distance advances and decreases until the closing velocity 𝑣𝑐 changes 

its sign. At that time, the last range between the missile and the target is inscribed and the miss-

distance result declared. 

 
Figure 1.7: Relative motion trajectories for two values of initial heading error 𝛿𝑒𝑟𝑟0 , for ideal system and for 

first order dynamics.  

The effect of the initial heading error takes form in the convex curve of the trajectory plots of 

the bigger heading error.   
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Example 2 – Long Target Range 

Figure 1.8 compares the acceleration commands of a system with an initial range 𝜌0 and a 

system with a two times bigger initial range, 2 ⋅ 𝜌0.  

 

Figure 1.8: Acceleration histories of a guidance system for two values of initial range 𝜌0, for ideal system and 

for first order dynamics.  

The initial heading error 𝛿𝑒𝑟𝑟0 for the two cases is the same. It is obvious that the flight length 

𝑡𝑓 will be about two times longer for the longer range, hence the time base for the cases is 

different. But it is possible to see that when the guidance system has a longer time to close the 

error in the velocity vector, it allows lower energy consumption in the sense of acceleration 

command. This is explained by the fact that the command is proportional to the LOS rate. Since 

the change in LOS is slower for a remote target, the command is lower as well. 

0 5 10 15 20
-1

0

1

2

3

4

5

6

7
Missile Acceleration

Time (sec)

A
cc

 (
g
)

 

 

a
c
: ideal,    

0

a
c
: 1st ord, 

0

a
m

: 1st ord, 
0

a
c
: ideal,    2

0

a
c
: 1st ord, 2

0

a
m

: 1st ord, 2
0



 

20 

  

 
Figure 1.9: Relative motion trajectories for two values of initial range 𝜌0, for ideal system and for first order 

dynamics.  

The trajectories in Figure 1.9 are straightforward. The bigger range ends in high values of 

trajectories for both 𝑥 and 𝑦 axis. The high value of 𝑦 is the result of a low command that 

enables a longer time to correct the velocity vector error.  

1.6. Summary 

Chapter 1 covered basic topics of the guidance as a preface for the study of the system under 

test. Laws of motion of the two-dimensional proportional navigation are introduced. Together 

with state space model of the missile dynamics, they were applied to conclude the nonlinear 

model of the guidance system. The equations of the model serve for system simulation as was 

presented with several examples in the last section.   
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2. System Linearization 
The exact nonlinear model of the guidance system that was developed in the previous chapter 

is the basis for any proportional navigation study. First, as a mathematical model for numerical 

simulation, second, as simplification and approximation for an analytical study. A kind of 

approximation is the system linearization to be performed in the following chapter. Analyses 

in later chapters will use the linearized model. 

2.1. Near Collision Course 

State space representation of the exact nonlinear model of the guidance system developed in 

the previous chapter and concluded in differential equations (1.20), algebraic equations (1.21) 

and initial conditions (1.23). The complex form of the equations makes the closed-form 

solution impossible, and analysis in terms of stability or intercept-operations also are very 

difficult. In advance, in most of the researches the problem is simplified by assuming some 

assumptions or limiting the conditions over a specific domain. An additional crucial step is to 

linearize the system. In general, linearization is made about an equilibrium point, but as the 

solution of system (1.20) may involve time-varying elements, linearization here has to be 

performed with respect to a solution which is a nominal trajectory [10]. 

Consider collision course conditions: 

c.1. Target velocity is constant in magnitude and direction. A realization of this condition is 

setting the target acceleration 𝑎𝑇 to zero.  

c.2. Missile velocity direction is ideally towards impact point with the target. In other words, 

lead angle 𝛿 (1.8) has no heading error component (𝛿𝑒𝑟𝑟 = 0). 
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Figure 2.1: Kinematics of motion in a collision triangle: the missile lead angle 𝛿 oriented precisely to impact 

point.    

Special attention is granted to conditions c.1 and c.2 because they imply a phase of flight in 

which no effort is required by the missile to meet the target. They are also important because 

the trajectories of the bodies are ultimately linear. The two trajectories form a geometric 

triangle whose third side is the instantaneous line-of-sight range (Figure 2.1).  

A scenario that is not absolutely ideal as c.1 and c.2 but has properties that are close to those 

that characterize c.1 and c.2  , can be found in the terminal stage of the interception. In the 

terminal stage the missile and the target flights are characterized by Near Collision Course 

(NCC) conditions. Namely, the conditions are not precisely of a collision course, but they are 

close to them. In many cases of terminal stage collision course conditions are assumed in order 

to simplify the analysis. Therefore, a formulation of the motion described by c.1 and c.2 is 

important.  

As the target and the missile velocities are constant, the relative velocity along the line of sight 

is also constant. Let constant relative velocity along the line of sight be the closing velocity 𝑣𝑐:  

 
𝑣𝑐 = −𝜌̇  (2.1) 

Where 𝑣𝑐 is the constant closing velocity, 𝜌 the length of the position vector 𝑟 (LOS range).  

Since the range between the missile and the target is supposed to be a decreasing function of 

time, 𝑣𝑐 positive represents the constant rate in which the missile approaches the target.  
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To formulate collision-course conditions, let us substitute the ideal lead angle (1.8) to (1.4): 

 

𝜌 ⋅ 𝜆̇ = 𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃 − 𝑣𝑚 ⋅ 𝑠𝑖𝑛 (𝑠𝑖𝑛
−1 (

𝑣𝑇
𝑣𝑚
⋅ 𝑠𝑖𝑛 𝜃))

= 𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃 − 𝑣𝑚 ⋅
𝑣𝑇
𝑣𝑚
⋅ 𝑠𝑖𝑛 𝜃 = 0 

(2.2) 

Where 𝜆 is the line of sight angle and 𝜌 the line of sight range, 𝑣𝑇 and 𝑣𝑚 are the target and the missile 

constant velocities, 𝛾𝑇 and 𝛾𝑚 their path angles, respectively. 𝜃 is target aspect angle and 𝛿 missile lead 

angle. 

We get 𝜌 ⋅ 𝜆̇ = 0, which implies that either 𝜌 = 0 or 𝜆̇ = 0. 𝜌 = 0 is trivial, we seek solutions 

during pursuit time. Hence the LOS rate 𝜆̇ is zero. As a result the LOS angle 𝜆 is constant and 

the guidance command is zero 𝑎𝑐 = 𝑁 ⋅ 𝑣𝑚 ⋅ 0 = 0. Second result is that the missile velocity 

direction is set constant (𝛾𝑚 constant) and 𝛿 the lead angle and 𝜃 the aspect angle are also 

constant.  

Now, uniform velocity of the target and the missile implies that the relative velocity along the 

line of sight is also constant: 

 
𝜌̇ = 𝑣𝑇 ⋅ 𝑐𝑜𝑠(𝛾𝑇 − 𝜆)⏟          

𝑐𝑜𝑛𝑠𝑡.

− 𝑣𝑚 ⋅ 𝑐𝑜𝑠(𝛾𝑚 − 𝜆)⏟          
𝑐𝑜𝑛𝑠𝑡.

= −𝑣𝑐 (2.3) 

Where 𝜌̇ is the relative velocity along the line of sight, 𝑣𝑇 and 𝑣𝑚 are the target and the missile constant 

velocities, 𝜆 is the line of sight angle, 𝛾𝑇 and 𝛾𝑚 are the target and the missile path angles respective, 

𝑣𝑐 is the constant closing velocity. 

Moreover, the time to collision may be calculated by the division of the range over the closing 

velocity. The prediction of the time-to-collision by a range measurement only is a significant 

simplification in the guidance design. Thus in some moment 𝑡0 when collision-course 

conditions are satisfied, the range to the target is 𝜌0, and the time interval remaining for the 

missile to fly until collision with the target is: 

 
𝑡𝑓 = 𝜌0/𝑣𝑐 (2.4) 

Where 𝑡𝑓 is the flight time from the measure of the range until collision, 𝜌0 is the line of sight range at 

fixed moment 𝑡0, 𝑣𝑐 is the closing velocity.  

Since the motion is linear, theoretically a single measure of 𝜌 is enough to provide predictions 

for all the future times, because in later moments the time to collision may be found by 
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subtracting from 𝑡𝑓 the time that elapsed since the measure of 𝜌. This yields the variable 𝑡𝑔𝑜, 

time-to-go, that is used as an index for time-until-collision: 

 
𝑡𝑔𝑜 = 𝑡𝑓 − 𝑡 (2.5) 

Where 𝑡𝑔𝑜 is time-to-go, the current remained time until collision, 𝑡𝑓 is the flight time from the measure 

of the range until collision and 𝑡 is the time that elapsed since then. See Figure 2.2 for illustration. 

Sometimes the term 𝑡𝑔𝑜 is used even when linear motion is not the case. But it means the same 

and it is only an approximation to the remaining time-to-collision, based on the current range 

to target and closing velocity.   

 

Figure 2.2: Timing illustration for time-to-go calculation. Labels below the line indicate a regular forward 

progressing timeline. Labels above indicate reverse order timeline starting at 𝑡𝑓.     

2.2. Reference Trajectory 

A state of operation around which the linearization should be performed can now be allocated.  

During the linearization we assume ideal dynamics, since the dynamics model (1.16) is in 

anyway LTI, it has no effect on the results. 

Let 𝑥𝑛 be the state vector of the nominal trajectory that solves (1.20) and characterized by 

collision course conditions, then the variables of 𝑥𝑛 are: 

 

𝜌𝑛 = 𝑣𝑐 ⋅ 𝑡𝑔𝑜 

𝜆𝑛 = 𝜆0 

𝜔𝑛 = 0 

𝛾𝑇𝑛 = 𝜃𝑛 + 𝜆𝑛 

𝛾𝑚𝑛 = 𝛿𝑛 + 𝜆𝑛 

(2.6) 

The nominal value of the variables 𝑥𝑎𝑛 = [𝜃𝑛 𝛿𝑛 𝑎𝑐] is also derived from the ideal straight 

line motion: 

 

𝜃𝑛 = 𝜃0 

𝛿𝑛 = 𝑠𝑖𝑛
−1(𝑣𝑇/𝑣𝑚 ⋅ 𝑠𝑖𝑛 𝜃𝑛) = 𝛿0, (𝛿𝑒𝑟𝑟 = 0) 

𝑎𝑐 = 0 

(2.7) 

𝑡𝑓 0 𝑡𝑔𝑜 

0 𝑡 
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Where subscript 𝑛 stands for nominal, subscript 0 refers to initial value at time 𝑡0, 𝑥𝑛 is the state vector 

of the nominal trajectory, 𝑥𝑎𝑛 is the vector of algebraic variables at the nominal trajectory, 𝜆 line of 

sight angle, 𝜔 line of sight angle rate, 𝜌 line of sight range, 𝑣𝑐 closing velocity, 𝑡𝑔𝑜 time-to-go, 𝛾𝑇 and 

𝛾𝑚 target and missile path angles, 𝜃 target aspect angle, 𝛿 missile lead angle, 𝛿𝑒𝑟𝑟 initial heading error, 

𝑣𝑇 and 𝑣𝑚 target and missile velocities, 𝑎𝑐 missile acceleration command. 

On (2.6) and (2.7), target acceleration should also be appended, that from condition c.1 is 𝑎𝑇 =

0. Notice that equations (1.20) and (1.21) do not include the input variable 𝑎𝑚, rather they have 

the input command 𝑎𝑐, that because during the linearization ideal dynamics assumption is 

valid, then 𝑥𝑑 vanishes and 𝑐𝑑 ⋅ 𝑥𝑑 returns to be 𝑎𝑚 again (see (1.16)).  

The angles in (2.6) and (2.7) are in fact constants, determined by their initial values. However, 

𝛿0 in the general case includes an error component, but for nominal motion the error 𝛿𝑒𝑟𝑟 is 

zero. 

Recall that 𝑡0 in (2.6) is a moment in which the missile motion satisfies near collision course 

conditions and was fixed as a reference for 𝑡𝑔𝑜, namely was tagged as 𝑡𝑓.  

Now, a differentiation of (2.6) yields: 

 𝑥̇𝑛 = [−𝑣𝑐 0 0 0 0]𝑇 (2.8) 

Where subscript 𝑛 stands for nominal, superscript 𝑇 is the transpose operator, 𝑥𝑛 nominal trajectory 

state vector, 𝑣𝑐 closing velocity.  

The nominal state (2.6) is confirmed as a solution by comparing the outcome (2.8) with the 

substitution of 𝑥𝑛 and 𝑥𝑎𝑛  from (2.6) and (2.7) to the RHS of (1.20).  

2.3. Function Expansion  

Let 𝛿𝑥 be a state vector of a deviation from the nominal trajectory 𝑥𝑛. The trajectory formed 

by a deviation upon the nominal trajectory is a general solution of (1.20): 

 
𝑥 = 𝑥𝑛 + 𝛿𝑥 (2.9) 

Where 𝑥 is a general state vector that solves (1.20), 𝑥𝑛 is state vector that solves (1.20) at the nominal 

trajectory and 𝛿𝑥 is a vector of variables at the environment of 𝑥𝑛.  
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The vector of variables 𝑥𝑎𝑛  to calculate by the algebraic equations (1.21) at the nominal 

trajectory, is also the sum of a nominal component and a deviation component:  

 𝑥𝑎 = 𝑥𝑎𝑛 + 𝛿𝑥𝑎 (2.10) 

Where 𝑥𝑎 , 𝑥𝑎𝑛 are the set of algebraic variables for the general solution and for the nominal trajectory 

respectively, 𝛿𝑥𝑎 is the vector of algebraic variables at the environment of 𝑥𝑎𝑛.  

According to the linearization approach, the nonlinear variations have to be approximated by 

their parts, which are linear with respect to 𝑑𝑡 in Taylor series expansion: 

 
𝛥𝑥 ≅ 𝛿𝑥 

𝛥𝑥𝑎 ≅ 𝛿𝑥𝑎 

(2.11) 

Where 𝛿𝑥 and 𝛿𝑥𝑎 are vectors at the environment of the nominal trajectory of the system state and of 

the algebraic-variables respectively, 𝛥𝑥, 𝛥𝑥𝑎 are linear approximation of 𝛿𝑥, 𝛿𝑥𝑎 respectively. 

Differentiation of (2.9) yields 𝑥̇ = 𝑥̇𝑛 + 𝛿𝑥̇. Substitution of 𝑥̇𝑛 + 𝛿𝑥̇ at the left of (1.24) yields:  

 𝑥̇𝑛 + 𝛿𝑥̇ = 𝑓(𝑥𝑛 + 𝛿𝑥, 𝑎𝑇𝑛 + 𝛿𝑎𝑇 , 𝑎𝑚𝑛 + 𝛿𝑎𝑚) (2.12) 

Where 𝑥𝑛 is a nominal trajectory state vector, 𝛿𝑥 is a state vector of a deviation, 𝑓 is functions-vector 

RHS of (1.20), 𝑎𝑇𝑛 and 𝛿𝑎𝑇 are target acceleration of nominal trajectory and of a deviation, 𝑎𝑚𝑛
 and 

𝛿𝑎𝑚 are missile acceleration of nominal trajectory and of a deviation. 

Function 𝑓 in (2.12) can be expressed by a Taylor series with respect to 𝑥𝑛: 

 

𝑥̇𝑛 + 𝛿𝑥̇ = 𝑓(𝑧)|𝑧=𝑧𝑛 + 
𝜕𝑓(𝑧)

𝜕𝑥
|
𝑧=𝑧𝑛

⋅ 𝛥𝑥 + 
𝜕𝑓(𝑧)

𝜕𝑎𝑇
|
𝑧=𝑧𝑛

⋅ 𝛥𝑎𝑇

+ 
𝜕𝑓(𝑧)

𝜕𝑎𝑚
|
𝑧=𝑧𝑛

⋅ 𝛥𝑎𝑚 +𝐻𝑂𝑇 

(2.13) 

Where 𝑧 stands for the set of arguments 𝑧 = (𝑥, 𝑎𝑇 , 𝑎𝑚) and 𝑧𝑛 stands for the nominal form of this set 

of arguments 𝑧𝑛 = (𝑥𝑛, 𝑎𝑇𝑛, 𝑎𝑚𝑛), 
𝜕

𝜕𝜀
 is an operator of differentiation with respect to a variable 𝜀 (𝜀 

may be each of the arguments of 𝑧), 𝑓 is the RHS of (1.20), 𝑥𝑛, 𝑎𝑇𝑛, 𝑎𝑚𝑛 are the variables and inputs at 

the nominal trajectory, and 𝛥𝑥, 𝛥𝑎𝑇 , 𝛥𝑎𝑚 are linear approximations of 𝛿𝑥, 𝛿𝑎𝑇 , 𝛿𝑎𝑚 – the state vector 

and inputs of a deviation from the nominal trajectory, acronym  𝐻𝑂𝑇 stands for Higher Order Terms.  
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Taylor series (2.13), is an expansion of the set of functions 𝑓 (1.24) (1.20) about the nominal 

trajectory (2.6). In (2.13), only the first derivative (for each one of the arguments) appears 

explicitly, higher derivatives are given implicitly by 𝐻𝑂𝑇 (Higher Order Terms).  

Since we seek linear approximation to 𝛿𝑥, terms higher than the first derivative are not of 

interest, therefore 𝐻𝑂𝑇 will be omitted. In addition, the term 𝑓(𝑧)|𝑧=𝑧𝑛, i.e. 

𝑓(𝑥, 𝑎𝑇 , 𝑎𝑚)|𝑥,𝑎𝑇,𝑎𝑚=𝑥𝑛,𝑎𝑇𝑛,𝑎𝑚𝑛, in (2.13), is in fact 𝑥̇𝑛. Considering these and (2.11), (2.13) 

becomes: 

 

𝛥𝑥̇ =  
𝜕𝑓(𝑥, 𝑎𝑇 , 𝑎𝑚)

𝜕𝑥
|
𝑥,𝑎𝑇,𝑎𝑚=𝑥𝑛,𝑎𝑇𝑛,𝑎𝑚𝑛

⋅ 𝛥𝑥

+ 
𝜕𝑓(𝑥, 𝑎𝑇 , 𝑎𝑚)

𝜕𝑎𝑇
|
𝑥,𝑎𝑇,𝑎𝑚=𝑥𝑛,𝑎𝑇𝑛,𝑎𝑚𝑛

⋅ 𝛥𝑎𝑇

+ 
𝜕𝑓(𝑥, 𝑎𝑇 , 𝑎𝑚)

𝜕𝑎𝑚
|
𝑥,𝑎𝑇,𝑎𝑚=𝑥𝑛,𝑎𝑇𝑛,𝑎𝑚𝑛

⋅ 𝛥𝑎𝑚 

(2.14) 

Where 𝛥𝑥̇ is linear approximation of 𝛿𝑥̇, the time-derivative of a deviation from the nominal trajectory 

𝑥𝑛, 
𝜕

𝜕𝜀
 is an operator of differentiation with respect to a variable 𝜀 (𝜀 = 𝑥 or 𝑎𝑇 or 𝑎𝑚), 𝑓(𝑥, 𝑎𝑇 , 𝑎𝑚) is 

RHS of (1.20), 𝑥𝑛, 𝑎𝑇𝑛, 𝑎𝑚𝑛 are the state vector and inputs of the nominal trajectory, and 𝛥𝑥, 𝛥𝑎𝑇 , 𝛥𝑎𝑚 

are linear approximation of 𝛿𝑥, 𝛿𝑎𝑇 , 𝛿𝑎𝑚 – the state vector and inputs of a deviation from the nominal 

trajectory.  

𝜕𝑓(𝑥,𝑎𝑇,𝑎𝑚)

𝜕𝑥
 in (2.14) is first-order partial derivative of the functions-vector 𝑓 (1.24) of (1.20), 

with respect to each variable in the state vector 𝑥. After the differentiations, the variables in the 

expressions have to be replaced by their nominal values. By the same manner 
𝜕𝑓(𝑥,𝑎𝑇,𝑎𝑚)

𝜕𝑎𝑇
 and 

𝜕𝑓(𝑥,𝑎𝑇,𝑎𝑚)

𝜕𝑎𝑚
 are first-order partial derivatives of the functions-vector 𝑓 with respect to 𝑎𝑇 and 

𝑎𝑚 respectively.  

Function that involves 𝜃 or 𝛿 has to be substituted first with the RHS of the variable. For 

example, the first function in (1.20) is 𝜌̇ = 𝑓1(𝑥, 𝑎𝑇 , 𝑎𝑚) = 𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃 − 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿, its partial 

derivative with respect to 𝑥2 = 𝜆 will therefore be: 

 

𝜕𝑓1
𝜕𝜆

=
𝜕[𝑣𝑇 ⋅ 𝑐𝑜𝑠(𝛾𝑇 − 𝜆) − 𝑣𝑚 ⋅ 𝑐𝑜𝑠(𝛾𝑚 − 𝜆)]

𝜕𝜆

= 𝑣𝑇 ⋅ 𝑠𝑖𝑛(𝛾𝑇 − 𝜆) − 𝑣𝑚 ⋅ 𝑠𝑖𝑛(𝛾𝑚 − 𝜆) 
(2.15) 
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Where 
𝜕

𝜕𝜀
 is an operator of differentiation with respect to a variable 𝜀, 𝑓1 = 𝜌̇, 𝜆 is the LOS angle,  𝑣𝑇 

and 𝑣𝑚 target and missile velocities, 𝛾𝑇 and 𝛾𝑚 are their angles respectively.  

Substitution of the nominal variables, in this case only the nominal algebraic variables  𝜃𝑛 =

𝜃0 and 𝛿𝑛 = 𝛿0, provides the coefficient of 𝛥𝑥2 for the linearized function of 𝑥̇1: 

 

𝜕𝑓1
𝜕𝑥2

|
𝑥𝑎=𝑥𝑎𝑛

= 𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃0 − 𝑣𝑚 ⋅ 𝑠𝑖𝑛 𝛿0

= 𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃0 − 𝑣𝑚 ⋅ 𝑠𝑖𝑛 [𝑠𝑖𝑛
−1 (𝑠𝑖𝑛(𝜃0) ⋅

𝑣𝑇
𝑣𝑚
)] = 0 

(2.16) 

Where 
𝜕𝑓1

𝜕𝑥2
 is differentiation of 𝑓1 with respect to 𝑥2, 𝑓1 = 𝜌̇ is the first function in the RHS of (1.20), 

𝑥𝑎 is the vector of the dependent variables of algebraic equations (1.21), 𝑥𝑎𝑛 is the vector 𝑥𝑎 at the 

nominal trajectory, 𝑣𝑇 and 𝑣𝑚 target and missile velocities, 𝜃0 is the target aspect angle at time 𝑡0 and 

𝛿0 is the missile lead angle at time 𝑡0.  

The coefficient of 𝛥𝑥2 in the linearized function 𝑓1 happens to be zero. Similar process, when 

applied to the rest of the coefficients of 𝑓1 and to all the other functions, yields the final form 

of (2.14), which by including the terms of the missile dynamics is given by the following set 

of linearized differential equations: 

 

𝛥𝑥̇1 = −𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝛥𝑥4 + 𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝛥𝑥5 

𝛥𝑥̇2 = 𝛥𝑥3 

𝛥𝑥̇3 =
2

𝑡𝑔𝑜
⋅ 𝛥𝑥3 +

𝑐𝑇
𝑡𝑔𝑜

⋅ 𝛥𝑎𝑇 −
𝑐𝑚
𝑡𝑔𝑜

⋅ 𝑐𝑑 ⋅ 𝛥𝑥𝑑 

𝛥𝑥̇4 =
1

𝑣𝑇
⋅ 𝛥𝑎𝑇 

𝛥𝑥̇5 =
1

𝑣𝑚
 ⋅ 𝑐𝑑 ⋅ 𝛥𝑥𝑑 

𝛥𝑥̇𝑑 = 𝐴𝑑 ⋅ 𝛥𝑥𝑑 + 𝑏𝑑 ⋅ 𝛥𝑎𝑐 

(2.17) 

Where subscript 𝑛 stands for nominal, subscript 𝑑 stands for dynamics,  [𝛥𝑥1, … , 𝛥𝑥5] =

[𝛥𝜌, 𝛥𝜆, 𝛥𝜔, 𝛥𝛾𝑇 , 𝛥𝛾𝑚] are the linearized state variables, 𝛥𝑥𝑑 ∈ 𝑅
𝑛×1 is the state vector of the missile 

dynamics with state matrix 𝐴𝑑 ∈ 𝑅
𝑛×𝑛 and vectors 𝑏𝑑 ∈ 𝑅

𝑛×1, 𝑐𝑑 ∈ 𝑅
1×𝑛, 𝛥𝑎𝑐 and 𝛥𝑎𝑇 are inputs of 

the missile acceleration and the target acceleration respectively, 𝑐𝑇 = 𝑐𝑜𝑠 𝜃𝑛 /𝑣𝑐 and 𝑐𝑚 = 𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑐 

are constant coefficients, 𝑡𝑔𝑜 is the remaining time to collision (time-to-go), 𝑣𝑐 is the constant closing 

velocity, 𝑣𝑇 and 𝑣𝑚 target and missile constant velocity magnitudes, 𝜃𝑛 initial target aspect angle and 

𝛿𝑛 initial ideal missile lead angle. 
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The constant coefficients 𝑐𝑇 , 𝑐𝑚 are given by:  

 

𝑐𝑇 =
𝑐𝑜𝑠 𝜃𝑛
𝑣𝑐

 

𝑐𝑚 =
𝑐𝑜𝑠 𝛿𝑛
𝑣𝑐

 

(2.18) 

Where 𝑐𝑇 is the constant coefficient of 𝛥𝑎𝑇 and 𝑐𝑚 is the constant coefficient of 𝛥𝑎𝑐 with the missile 

dynamics, 𝜃𝑛 = 𝜃0 is the target initial aspect angle and 𝛿𝑛 is the missile ideal lead angle, 𝑣𝑐 is the 

closing velocity. 

Linearization of vector 𝑥𝑎 of the algebraic variables yields:  

 

𝛥𝜃 = 𝛥𝛾𝑇 − 𝛥𝜆 

𝛥𝛿 = 𝛥𝛾𝑚 − 𝛥𝜆 

𝛥𝑎𝑐 = 𝑁 ⋅ 𝑣𝑚 ⋅ 𝛥𝜔 

(2.19) 

Where 𝛥𝜃 is the target linearized aspect angle and 𝛥𝛿 missile linearized lead angle, 𝛥𝛾𝑇 and 𝛥𝛾𝑚 are 

target and missile linearized path angles respectively, 𝛥𝜆 linearized LOS angle, 𝛥𝑎𝑐 is linearized 

acceleration command needed to perform by the control system, 𝑁 constant navigation gain, 𝑣𝑚 missile 

velocity and 𝛥𝜔 the linearized line of sight angle rate. 

Where 𝛥𝑥𝑎 = 𝑥𝑎 remained with no change because the already linear form of the equations. In 

practice 𝛥𝜃 and 𝛥𝛿 need not be calculated. These variables are replaced by their nominal 

constant values 𝜃𝑛 and 𝛿𝑛. 𝜃𝑛 is the initial target aspect angle, and 𝛿𝑛 is the initial missile ideal 

lead angle, with no error. 

The terms 𝑡𝑔𝑜 and 𝑣𝑐 in (2.17) and (2.18) are products of the linear motion about which the 

linearization is done. As shown in section 2.1, in collision-course conditions the trajectories of 

the target and the missile are straight lines that are about to meet, where the time to collision is 

a function of the instantaneous range and the constant closing velocity.  

The terms to find the parameters at the right hand side of (2.17) are collected from previous 

equations:  

 

𝜃𝑛 = 𝜃0 

𝛿𝑛 = 𝑠𝑖𝑛
−1(𝑠𝑖𝑛(𝜃𝑛) ⋅ 𝑣𝑇/𝑣𝑚) = 𝛿0 − 𝛿𝑒𝑟𝑟 

𝑣𝑐 = 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿𝑛 − 𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃𝑛 

𝑐𝑇 = 𝑐𝑜𝑠 𝜃𝑛 /𝑣𝑐 

𝑐𝑚 = 𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑐 

𝑡𝑓 = 𝜌0/𝑣𝑐 

𝑡𝑔𝑜 = 𝑡𝑓 − 𝑡 

(2.20) 
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Where subscript 𝑛 stands for nominal, subscript 0 denotes initial time 𝑡0, 𝜃 target aspect angle and 𝛿 

missile lead angle, 𝛿𝑒𝑟𝑟 initial heading error, 𝑣𝑚 missile constant velocity magnitude, 𝑣𝑇 target constant 

velocity magnitude, 𝑣𝑐 closing velocity, 𝑐𝑇 and 𝑐𝑚 are constant coefficients, 𝑡𝑔𝑜 is time-to-go, 𝑡𝑓 is the 

flight time, 𝑡 is the time that elapsed since the initial time 𝑡0, 𝜌 line of sight range.   

From (2.9), initial conditions for (2.17) are found by calculating the difference of the general 

solution and the nominal trajectory (2.6): 

 

𝑥10 = 0 

𝑥20 = 0 

𝑥30 = (𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃0 − 𝑣𝑚 ⋅ 𝑠𝑖𝑛 𝛿0)/(𝑣𝑐 ⋅ 𝑡𝑓)  

𝑥40 = 0 

𝑥50 = 𝛿𝑒𝑟𝑟 

𝑥𝑑0 = 0 

(2.21) 

Where 𝑥0 ∈ 𝑅
(𝑛+5)×1 is the initial conditions vector of the linearized system (2.17), 𝜌0 line of sight 

range at time 𝑡0, 𝑣𝑇 and 𝑣𝑚 target and missile velocities, 𝜃0 is the target aspect angle at time 𝑡0 and 𝛿0 

is the missile lead angle at time 𝑡0, 𝛿𝑒𝑟𝑟 initial heading error – the deviation of the missile lead angle 

from the correct direction (see 1.9), 𝑥𝑑 state vector of missile dynamics of 𝑛𝑡ℎ order. 

2.4. Linear System – Examples 

The systems that will be used to demonstrate the linearization appear in the following 

equations. As described in section 2.3, approximation of the nonlinear state is composed of two 

parts, nominal part and a linearized deviation. Therefore for each system here, the solution of 

the nominal reference is given as well as the differential equations of the linearized deviation.  

Parameters and conditions of the nonlinear examples 1.5 still hold.  

Ideal Dynamics 

Algebraic calculations for the reference and the linear system: 

 

𝜃𝑛 = 𝜃0 

𝛿𝑛 = 𝛿0 − 𝛿𝑒𝑟𝑟 

𝜆𝑛 = 𝜆0 

𝑣𝑐 = 400 ⋅ 𝑐𝑜𝑠 𝛿𝑛 − 200 ⋅ 𝑐𝑜𝑠 𝜃𝑛 

𝑐𝑇 = 𝑐𝑜𝑠 𝜃𝑛 /𝑣𝑐 

𝑐𝑚 = 𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑐 

𝑡𝑓 = 𝜌0/𝑣𝑐 

(2.22) 
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𝑡𝑔𝑜 = 𝑡𝑓 − 𝑡 

Supporting calculations: 

 

𝜌0 = 𝑥𝑇0 

𝜆0 = 𝑠𝑖𝑛
−1(𝑟𝑦0/𝜌) = 0 

𝜔0 = (200 ⋅ 𝑠𝑖𝑛 𝜃0 − 400 ⋅ 𝑠𝑖𝑛 𝛿0)/𝑥𝑇0 

𝛾𝑇0 = 𝜃0 

𝛾𝑚0
= 𝑠𝑖𝑛−1[(𝑠𝑖𝑛𝜃0)/2] + 𝛿𝑒𝑟𝑟 

(2.23) 

Reference System  

System equations: 

 

𝑥1 = 𝑣𝑐 ⋅ 𝑡𝑔𝑜 

𝑥2 = 𝜆𝑛 

𝑥3 = 0 

𝑥4 = 𝜃𝑛 + 𝜆𝑛 

𝑥5 = 𝛿𝑛 + 𝜆𝑛 

(2.24) 

Linear System  

Differential equations: 

 

𝑥̇1 = −200 ⋅ 𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝑥4 + 200 ⋅ 𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝑥5 

𝑥̇2 = 𝑥3 

𝑥̇3 = 2 ⋅ 𝑥3/𝑡𝑔𝑜  − 𝑐𝑚 ⋅ 𝑎𝑐/𝑡𝑔𝑜 

𝑥̇4 = 0 

𝑥̇5 = 𝑎𝑐/400 

(2.25) 

Initial conditions: 

 

𝑥10 = 0 

𝑥20 = 0 

𝑥30 = (200 ⋅ 𝑠𝑖𝑛 𝜃0 − 400 ⋅ 𝑠𝑖𝑛 𝛿0)/(𝑣𝑐 ⋅ 𝑡𝑓)  

𝑥40 = 0 

𝑥50 = 𝛿𝑒𝑟𝑟 

(2.26) 

1st Order Dynamics 

Based on the first order transfer function: 

 𝑎𝑚 =
1

𝜏𝑚 ⋅ 𝑠 + 1
⋅ 𝑎𝑐 (2.27) 
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Where 𝑎𝑚 is the missile actual acceleration at the lateral plane, 𝑎𝑐 PN command, 𝑠 Laplace transform 

variable and 𝜏𝑚 time-constant of the missile dynamics.  

Reference System  

System equations: 

 

𝑥1 = 𝑣𝑐 ⋅ 𝑡𝑔𝑜 

𝑥2 = 𝜆𝑛 

𝑥3 = 0 

𝑥4 = 𝜃𝑛 + 𝜆𝑛 

𝑥5 = 𝛿𝑛 + 𝜆𝑛 

𝑥6 = 0 

(2.28) 

Linear System  

Differential equations: 

 

𝑥̇1 = −200 ⋅ 𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝑥4 + 200 ⋅ 𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝑥5 

𝑥̇2 = 𝑥3 

𝑥̇3 = 2 ⋅ 𝑥3/𝑡𝑔𝑜  − 𝑐𝑚 ⋅ 𝑥6/𝑡𝑔𝑜 

𝑥̇4 = 0 

𝑥̇5 = 𝑥6/400 

𝑥̇6 = −𝑥6 𝜏𝑚⁄ + 𝑎𝑐 𝜏𝑚⁄  

(2.29) 

Initial conditions: 

 

𝑥10 = 0 

𝑥20 = 0 

𝑥30 = (200 ⋅ 𝑠𝑖𝑛 𝜃𝑜 − 400 ⋅ 𝑠𝑖𝑛 𝛿0)/(𝑣𝑐 ⋅ 𝑡𝑓)  

𝑥40 = 0 

𝑥50 = 𝛿𝑒𝑟𝑟 

𝑥60 = 𝑎𝑚0 

 

(2.30) 

Example 1 – States Approximation  

The purpose now is to examine the approximation of the linear states, most importantly 𝜌 = 𝑥1 

and 𝜔 = 𝑥3, to their nonlinear values. The line of sight rate 𝜔 according to the proportional 

navigation law, is the feedback control state and its asymptotic behavior is a key factor for 

stability in the sense of Lyapunov. 𝜌 is the missile-target relative position and its final value 

determines the miss distance. Without reliable approximation to these two, no significant 

results can be achieved.   
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The simulation in the following examples ran the linear and nonlinear systems for ideal and 

nonideal dynamics, for initial heading error 𝛿𝑒𝑟𝑟0. 

 

Figure 2.3: Relative motion trajectories comparison of linear and nonlinear systems, for ideal system and for 

first order dynamics.  

The linearized states of the relative position (Figure 2.3) and the line of sight rate (Figure 2.4) 

present very good approximation to their nonlinear values. In both figures a gap distinguishes 

the nonideal (1st order) system from the ideal system. But the signals of the linear system follow 

closely in time (Figure 2.4) and in position (Figure 2.3) to their original signals.  

 

Figure 2.4: Comparison of acceleration histories of linear and nonlinear systems, for ideal system and for first 

order dynamics.  
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Example 2 – Miss Distance  

Now we will study the miss-distance estimations as provided by the linear system. Figure 2.5 

displays the distance between the missile and target at the time of flyby, the time at which the 

closing velocity changes direction from approaching to distancing, versus initial heading error 

𝛿𝑒𝑟𝑟0. In order to achieve distinct results, the comparison has been done using a nonideal 

dynamic system, in this case 1st order dynamics.  

 

Figure 2.5: Miss Distance comparison.  

The miss distance achieved by the linear system reflects the original miss distance of the 

nonlinear system very well. Recall the state of operation about which the linearization was 

done is ideal, namely 𝛿𝑒𝑟𝑟0 = 0, so it is obvious therefore that the better approximation will be 

at the vicinity of that condition.  

In the next chapter the linearized model will be the basis for the stability analysis of a guidance 

system engaging proportional navigation.  

2.5. Linear Model Overview  

The relation of the missile and the target accelerations to the line of sight rate that was a concern 

in section 1.4.1 and indicated by the operator 𝑇(𝑡), is now termed explicitly with time-variable 

coefficients, as indicated in the third equation in (2.17): 

 𝛥𝑥̇3 =
2

𝑡𝑔𝑜
⋅ 𝛥𝑥3 +

𝑐𝑇
𝑡𝑔𝑜

⋅ 𝛥𝑎𝑇 −
𝑐𝑚
𝑡𝑔𝑜

⋅ 𝑐𝑑 ⋅ 𝛥𝑥𝑑 (2.17) 
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Where [𝛥𝑥1, … , 𝛥𝑥5] = [𝛥𝜌, 𝛥𝜆, 𝛥𝜔, 𝛥𝛾𝑇 , 𝛥𝛾𝑚] are the linearized state variables, 𝛥𝑥𝑑 ∈ 𝑅
𝑛×1 is the 

state vector of the missile dynamics with state matrix 𝐴𝑑 ∈ 𝑅
𝑛×𝑛 and vectors 𝑏𝑑 ∈ 𝑅

𝑛×1, 𝑐𝑑 ∈ 𝑅
1×𝑛, 

𝛥𝑎𝑇 is the input of the target acceleration, 𝑐𝑇 = 𝑐𝑜𝑠 𝜃𝑛 /𝑣𝑐 and 𝑐𝑚 = 𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑚 are constant 

coefficients, 𝑡𝑔𝑜 is the remaining time to collision (time-to-go), 𝑣𝑐 constant closing velocity. 

The leading term 𝑡𝑔𝑜 = 𝑡𝑓 − 𝑡 is the time-to-go, the remaining time to collision starting with 

fixed point in time 𝑡𝑓 (see Figure 2.2).  

Now, the linearized model (2.17) is presented schematically in Figure 2.6. In it we identify 

three subsystems (each encompassed with a dashed line). 

 

Figure 2.6: Linearized model description with dashed lines mark the different subsystems.    

The first subsystem appearing in Figure 2.6 is of the operator 𝑇(𝑡). It is a closed loop about 

𝑥3 = 𝜔 with 𝜔 at the output. This subsystem is governed by equations (3) and (6) in (2.17). 

We term this part the ‘closed-loop’ system.  

The second subsystem begins with 𝑎𝑐 and ends with 𝑥2 = 𝜆. This system contains a single 

integrator after the closed-loop (Recall that 𝑎𝑐 is the proportional navigation command 𝑎𝑐 =

𝑁 ⋅ 𝑣𝑚 ⋅ 𝜔). In (2.17), equation (2) forms this relation.  

The third is the subsystem that begins with 𝑎𝑐 and ends with 𝑥1 = 𝜌. The behavior of this 

system is the behavior of the missile-target range. After the closed-loop system, two integrators 

appear in this subsystem. Contained in equations (1) and (5) in (2.17). 

Dynamics  

𝑇(𝑡𝑔𝑜)  

𝑁 ⋅ 𝑣𝑚   

∫ 

∫ ∫ 

𝜔 

𝑎𝑚   𝑎𝑐   

𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃𝑛 𝑐𝑑/𝑣𝑚 
𝜌 𝛾𝑚 

𝜆 

∫ 𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃𝑛 1/𝑣𝑇 
𝛾𝑇 

- 

𝑎𝑇  
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Notice that the integrations of the second and the third subsystems cannot be separated or 

deferred from the integration of the closed-loop system. That is, the overall system (2.17) has 

to be integrated simultaneously. 

The closed-loop system connects the missile acceleration command with the line of sight angle 

rate derivative and it possesses the main stability properties of the system. Chapter 3 will be 

devoted to the analysis of that subsystem.  

As the final value of 𝜌 forms the miss-distance, the third subsystem has significance in miss 

distance analysis. But as this system has two integrators after the closed-loop system and the 

second subsystem has only one, the stability of this subsystem cannot be examined separately 

of the second. Chapter 4 will introduce the analysis of these two subsystems.  

2.6. Summary 

Chapter 2 developed the linearized model of the guidance system. It has been demonstrated 

that collision-course conditions, which are an ideal state of the proportional navigation system, 

can serve as basis for linearization. A linearized model in the form of ordinary linear differential 

equations with time-varying parameters was derived. Examples for time histories of the states 

and miss-distance results, demonstrated very good approximation with the exact nonlinear 

model.  
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3. Closed-Loop Analysis  
The models for both nonlinear and linearized systems were developed in the previous chapters. 

We now move on to analyze the stability of the system. In the following chapter an analysis of 

the line of sight angle rate is given. This variable requires particular consideration because of 

the special shape of its time-dependency. In the opening, an introduction about the problem, 

later on is model rearrangement and finally analysis based on an extension to Lyapunov 

stability theory.  

3.1. The Stability Problem 

3.1.1. The Linear Model 

For the purpose of the discussion in this chapter let’s rewrite the final form of the linearized 

guidance system developed in chapter 2, in terms of a state-space model: 

 

𝑥̇1 = −𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝑥4 + 𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝑥5 

𝑥̇2 = 𝑥3 

𝑥̇3 =
2

𝑡𝑔𝑜
⋅ 𝑥3 +

𝑐𝑇
𝑡𝑔𝑜

⋅ 𝑎𝑇 −
𝑐𝑚
𝑡𝑔𝑜

⋅ 𝑐𝑑 ⋅ 𝑥𝑑 

𝑥̇4 =
1

𝑣𝑇
⋅ 𝑎𝑇 

𝑥̇5 =
1

𝑣𝑚
 ⋅ 𝑐𝑑 ⋅ 𝑥𝑑 

𝑥̇𝑑 = 𝐴𝑑 ⋅ 𝑥𝑑 + 𝑏𝑑 ⋅ 𝑎𝑐 

(3.1) 

Where subscript 𝑛 stands for nominal, subscript 𝑑 stands for dynamics,  [𝑥1, … , 𝑥5] = [𝜌, 𝜆, 𝜔, 𝛾𝑇 , 𝛾𝑚] 

are the state variables, 𝑥𝑑 ∈ 𝑅
𝑛×1 is the state vector of the missile dynamics with state matrix 𝐴𝑑 ∈

𝑅𝑛×𝑛 and vectors 𝑏𝑑 ∈ 𝑅
𝑛×1, 𝑐𝑑 ∈ 𝑅

1×𝑛, 𝑎𝑐 and 𝑎𝑇 are inputs of the missile acceleration and the target 

acceleration respectively, 𝑐𝑇 = 𝑐𝑜𝑠 𝜃𝑛 /𝑣𝑐 and 𝑐𝑚 = 𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑐 are constant coefficients, 𝑡𝑔𝑜 is the 

remaining time to collision (time-to-go), 𝑣𝑐 is the constant closing velocity, 𝑣𝑇 and 𝑣𝑚 target and missile 

constant velocity magnitudes, 𝜃𝑛 initial target aspect angle and 𝛿𝑛 initial ideal missile lead angle. 

Solving equations (3.1) is subject to a preceding evaluation of the algebraic equations and the 

following expressions: 

 

𝑎𝑐 = 𝑁 ⋅ 𝑣𝑚 ⋅ 𝜔 

𝜃𝑛 = 𝜃0 

𝛿𝑛 = 𝑠𝑖𝑛
−1(𝑠𝑖𝑛(𝜃𝑛) ⋅ 𝑣𝑇/𝑣𝑚) = 𝛿0 − 𝛿𝑒𝑟𝑟 

(3.2) 
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𝑣𝑐 = 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿𝑛 − 𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃𝑛 

𝑐𝑇 = 𝑐𝑜𝑠 𝜃𝑛 /𝑣𝑐 

𝑐𝑚 = 𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑐 

𝑡𝑓 = 𝜌0/𝑣𝑐 

𝑡𝑔𝑜 = 𝑡𝑓 − 𝑡 

Where subscript 𝑛 stands for nominal, subscript 0 denotes initial time 𝑡0, 𝑎𝑐 is the acceleration 

command needed to perform by the control system, 𝑁 constant navigation gain, 𝑣𝑚 missile velocity and 

𝜔 the line of sight angle rate, 𝜃 target aspect angle and 𝛿 missile lead angle, 𝛿𝑒𝑟𝑟 initial heading error, 𝑣𝑇 

target constant velocity magnitude, 𝑣𝑐 closing velocity, 𝑐𝑇 and 𝑐𝑚 are constant coefficients, 𝑡𝑔𝑜 is the 

time-to-go, 𝑡𝑓 is the flight time, 𝑡 is the time that elapsed since the initial time 𝑡0, 𝜌 line of sight range.   

Initial conditions for (3.1) are given by: 

 

𝑥10 = 0 

𝑥20 = 0 

𝑥30 = (𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃0 − 𝑣𝑚 ⋅ 𝑠𝑖𝑛 𝛿0)/(𝑣𝑐 ⋅ 𝑡𝑓)  

𝑥40 = 0 

𝑥50 = 𝛿𝑒𝑟𝑟 

𝑥𝑑0 = 0 

(3.3) 

Where 𝑥0 ∈ 𝑅
(𝑛+5)×1 is the initial conditions vector of system (3.1), 𝑣𝑇 and 𝑣𝑚 target and missile 

velocities, 𝜃0 is the target aspect angle at time 𝑡0 and 𝛿0 is the missile lead angle at time 𝑡0, 𝛿𝑒𝑟𝑟 initial 

heading error – the deviation of the missile lead angle from the correct direction (see 1.9), 𝑥𝑑 state 

vector of missile dynamics of 𝑛𝑡ℎ order, 𝑣𝑐 is the constant closing velocity and 𝑡𝑓 is the flight time.  

A note about initial conditions: According to Lyapunov, we do not take into account the initial 

state (3.3) of the system. The theory allows assuming any initial state 𝑥0 ∈ 𝑅
(𝑛+5)×1 taken 

arbitrarily in a small neighborhood of the origin (in the linear case, the vicinity of zero has no 

limits).  

3.1.2. Stability Analysis of Time-Varying Systems  

The concept of Lyapunov-stability for time-varying systems is an extension to the fundamental 

Lyapunov theory. Like the fundamental case, stability of a time-varying system defined around 

an equilibrium point. If the initial conditions may be selected independently of 𝑡0, the system 

is said to be uniformly stable in the sense of Lyapunov.   
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Lyapunov function for time-varying systems usually has to include a time variable within it 

and then the time-derivative of the function consists of explicit terms of 𝑡:  

 𝑣̇(𝑥(𝑡), 𝑡) =
𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
+ ∇𝑣(𝑥, 𝑡) ⋅ 𝑓(𝑥(𝑡), 𝑡) (3.4) 

Where 𝑣 is the Lyapunov function, 𝑥(𝑡) is the state vector, 
𝜕

𝜕𝑡
 is the time derivative operator, ∇ is the 

gradient with respect to the state variables of 𝑥(𝑡), 𝑓 is a functions-vector representing the derivatives 

of 𝑥(𝑡), 𝑡 time variable.   

𝑣(𝑥, 𝑡) is a Lyapunov function of a system around an equilibrium point, if it is positive definite 

on 𝑡 ≥ 0 and 𝑣̇(𝑥(𝑡), 𝑡) ≤ 0. As it is often difficult to find a Lyapunov function for a system, 

in the case of a guidance system it is actually impossible, since the function candidate to be 

Lyapunov and its first order partial derivatives, have to be defined and continuous over the all 

interval 𝑡 ≥ 0, a condition that cannot be applicable to (3.1) because the system has a singular 

point at 𝑡 = 𝑡𝑓 and is not defined for later times.  

3.1.3. Sectorial Method Analyses  

Previous works studied the stability of proportional navigation systems using sectorial methods 

such as the Popov criterion [8] and the Circle criterion [11]. In these methods the nonlinear 

part of the system, denoted by a continuous function 𝜑(𝑦), where 𝑦 feedback state vector, 

belongs to a sector [𝑘1, 𝑘2] [12]: 

 
𝑦 ≠ 0  ⟹ 𝑘1 ≤

𝜑(𝑦)

𝑦
≤ 𝑘2 (3.5) 

By assigning 𝜑(𝑦) with the time-varying part of the linearized guidance model, the sector of 

time in which the ‘system remains finite-time stable’ is found. As a result, sufficient conditions 

to stability are derived:  

 

𝑁 > 2  

𝑡𝑔𝑜  > −𝑁 ⋅ 𝑅[𝐺(𝑖𝜔)/𝑖𝜔] 
(3.6) 

Where 𝑅 implies real part, 𝑁 is the navigation gain, 𝑡𝑔𝑜 time-to-go, 𝐺(𝑖𝜔) missile subsystems transfer 

function, 𝜔 frequency domain variable, 𝑖 is the imaginary number.   

According to (3.6), for a missile represented by a 1𝑠𝑡  order transfer function with time-

constant 𝜏𝑚 = 0.5 𝑠𝑒𝑐 and gain 𝑁 = 4, the system remains stable for every 𝑡𝑔𝑜 < −4 ⋅

(−0.5) = 2 𝑠𝑒𝑐., but no longer.  
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Similar results that provide conditions to stability in terms of the smallest stable time 𝑡𝑔𝑜, or 

smallest stable range 𝜌, generated by a customary approach of engineers to freeze the system 

in different times along the process and to apply standard tools as if the system were an LTI 

[2].  

3.1.4. Differential Equations with Terminal 

Singular Point 

The stability question is sometimes confused with the question of successful interception. The 

problem the designer of a missile faces is to hit a target in a given range within a given time. 

And if the system is stable, then the line of sight rate will remain bounded and the missile 

should meet the target. Then maybe it is a matter of some given parameters, that the stability 

has to be examined with respect to them. In this case the flight time is fixed and there is no 

sense in talking about asymptotic stability.  

But if the question of stability is examined in the broad sense, then it has to query the guidance 

system character, as to whether it is stable or not. Namely, for the general interception problem 

of a guidance system, represented in a parametric manner, whether it is stable or not. In that 

sense, meaning to asymptotic stability exists, because if the state vector norm decreases with 

respect to an increase of the target range, which is equivalent to an increase in flight time, then 

the system is asymptotic-stable for sure. The problem for each individual interception then will 

be to find the appropriate conditions for launching. In this regard then, stability does finally 

provide an answer to the question of performances.  

System (3.1) is time-varying. But the varying coefficients of (3.1) are not simple factors of 

time, rather they depend inversely on time-to-go (1/𝑡𝑔𝑜 = 1/(𝑡𝑓 − 𝑡)), which implies that the 

process is limited within a finite time 𝑡𝑓 (see Figure 2.2), and as time elapses, and 𝑡𝑔𝑜 

approaches 0, the time variables go to infinity.  

The presence of 𝑡𝑔𝑜 in the dominator creates a terminal (final-time) singular point in the system 

model. Mathematically it makes the set of equations (3.1) a complicated form of ordinary 

differential equations and the orthodox approaches to investigate time-varying systems are 

therefore not applicable in this case. In fact only a theory of ordinary linear differential 

equations with terminal singular point, may provide results that do justice to the unique form 

of the system.   
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Accordingly we seek to analyze the stability of the guidance loop of a missile employing 

proportional navigation by querying the linearized model (3.1), and to do so while taking into 

account the characters of the model, which is time-varying and has a terminal singular point.  

The problem of the stability here is to find the guidance system parameters that guarantee that 

the state vector of (3.1) remains bounded, or better, asymptotically converges, over the flight. 

However, as the terminal singular point of the model indicates, and is evident by the geometry 

of the pursuit, as the missile approaches the target, the line of sight angle-rate tends to diverge. 

Then a final divergence is a natural result of the guidance system.  

Regarding that, an additional effort has to be made in order to consider the final moment in the 

analysis. In the next section an approach is presented that meets the requirements to analyze 

system (3.1).  

3.2. Barabanov - Skorokhod Approach 

An approach to the theory of linear systems with a regular singular point at the end of the 

process was introduced by Barabanov and Skorokhod [13] [14]. In their papers the analyzed 

system has the following mathematical model: 

 

𝑥̇ = 𝐹 ⋅ 𝑥 + 𝑔 ⋅
𝑦

𝑡𝑔𝑜
 

𝑦 = ℎ ⋅ 𝑥 

(3.7) 

Where 𝑥̇, 𝑥 ∈ 𝑅𝑛×1 are the analyzed system state vector and its derivative, 𝐹 ∈ 𝑅𝑛×𝑛, 𝑔 ∈ 𝑅𝑛×1, ℎ ∈

𝑅1×𝑛 are the system state matrix and vectors, 𝑦 is a state feedback control input, 𝑡𝑔𝑜 = 𝑡𝑓 − 𝑡 is the 

remained time to end of the process (time-to-go. 𝑡𝑓 total process time, 𝑡 time variable).  

State matrix 𝐹 and vectors 𝑔 and ℎ in (3.7) are constant and 𝐹 has left half-plane eigenvalues, 

with a possible exception for one zero. 

The analysis of systems such as (3.7), according to the Barabanov - Skorokhod approach, is 

performed by exploring the behavior of the system for non-bounded increase of the process 

time-length (𝑡𝑓 → ∞), using an extension to Lyapunov theorem. 

Based on this concept, Definition 1 and Definition 2 below were introduced by Barabanov [13]. 

The definitions make use of the following symbols: 

𝑥(𝑡) Time-variable state vector of the analyzed system 

𝑥0 Initial conditions of state vector 𝑥(𝑡) 
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‖𝑥‖ Euclidean norm of vector 𝑥 

𝑡𝑓 Total flight time of a single process 

𝑡𝑔𝑜 Time-to-go, remained time to collision 

𝛼 Positive constant 

𝜏1 Positive constant 

𝜏2 Positive constant 

Definition 1 

System (3.7) is uniformly stable (uniformly bounded) if there exists a positive constant 𝛼 > 0, 

such that the inequality 

 
‖𝑥(𝑡)‖ ≤ 𝛼 ⋅ ‖𝑥0‖ (3.8) 

holds for every 0 ≤ 𝑡 ≤ 𝑡𝑓 − 𝜏1, where 𝜏1 is an arbitrary positive constant. 

Definition 2 

System (3.7) is asymptotically stable, if it is uniformly stable and for any two positive 

constants, 0 < 𝜏1 < 𝜏2, the system state ‖𝑥(𝑡)‖ approaches zero as 𝑡𝑓 → ∞ , where:  

 
𝜏1 ≤ 𝑡𝑔𝑜 ≤ 𝜏2 (3.9) 

Notes on Definition 1 and Definition 2:  

n.1. The time parameters and chronological order in Definition 1 and Definition 2 may be 

elucidated with Figure 3.1: 

 

Figure 3.1: Timing illustration for Definition 1 and Definition 2. The labels below the line indicate a regular 

forward progressing timeline; the labels above indicate a reverse order timeline.     

n.2. The arbitrary constant 𝛼 > 0 does not depend on 𝑡𝑓.  

n.3. The arbitrary positive constant 𝜏1 was introduced in Definition 1 to avoid the analysis of 

the system in the neighborhood of the singular point 𝑡𝑔𝑜 = 0. By that gap, all the 

𝑡𝑓 0 𝑡𝑔𝑜 

0 𝑡 

𝜏1 

𝜏2 
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statements about the system exclude the final moment, where the missile guidance is 

practically uncontrollable. See Figure 3.1 for illustration.  

n.4. The free variable that progresses asymptotically here is 𝑡𝑓 rather than 𝑡. Since the 

guidance process holds between 𝑡𝑓 and 0, for each process 𝑡 is bounded over that interval 

of time. Moreover, Definition 2 states that a missile is regarded asymptotically stable, on 

condition that on time interval (3.9), vector norm ‖𝑥‖ decreases for an increment of 𝑡𝑓. 

n.5. Thus, the Barabanov - Skorokhod approach to stability of the closed-loop system in the 

sense of Lyapunov, means that its state is bounded (tends toward zero) for a non-bounded 

increase of the flight time (𝑡𝑓 → ∞).  

In the next section we are going to organize the system states to correspond with the 

mathematical form of model (3.7). 

3.3. Model Rearrangement 

In order to bring system (3.1) to the appropriate form as required by the Barabanov - Skorokhod 

approach, a linear transformation has to be performed. But first, we seek to simplify the system 

by reducing its order, as suggested in the form of a number of equations in (3.1). 

3.3.1. Order Reduction 

First let’s assume a non-maneuvering target. Since stability in the sense of Lyapunov is 

unaffected by the target acceleration, we henceforth put [7]: 

 𝑎𝑇 = 0  (3.10) 

Where 𝑎𝑇 is target acceleration input. 

This allows us to omit 𝑥̇4 in (3.1) and replace 𝑥4 with 𝑥40 = 0.  

Recall also that the guidance acceleration command is given by the PN law (1.14): 

 𝑎𝑐 = 𝑁 ⋅ 𝑣𝑚 ⋅ 𝜔  (1.14) 

Where 𝑎𝑐 is a lateral acceleration command needed to perform by the control system, 𝑁 constant 

navigation gain, 𝑣𝑚 missile velocity and 𝜔 the line of sight angle rate.  

And let (1.14) replace 𝑎𝑐 in the equations. 
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Regarding these, (3.1) becomes: 

 

𝑥̇1 = 𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝑥5 

𝑥̇2 = 𝑥3 

𝑥̇3 =
2

𝑡𝑔𝑜
⋅ 𝑥3 −

𝑐𝑚
𝑡𝑔𝑜

⋅ 𝑐𝑑 ⋅ 𝑥𝑑 

𝑥̇5 =
1

𝑣𝑚
 ⋅ 𝑐𝑑 ⋅ 𝑥𝑑 

𝑥̇𝑑 = 𝐴𝑑 ⋅ 𝑥𝑑 + 𝑏𝑑 ⋅ 𝑎𝑐 

(3.11) 

Where subscript 𝑛 stands for nominal, subscript 𝑑 stands for dynamics,  [𝑥1, 𝑥2, 𝑥3, 𝑥5] = [𝜌, 𝜆, 𝜔, 𝛾𝑚] 

are the state variables, 𝑥𝑑 ∈ 𝑅
𝑛×1 is the state vector of the missile dynamics with state matrix 𝐴𝑑 ∈

𝑅𝑛×𝑛 and vectors 𝑏𝑑 ∈ 𝑅
𝑛×1, 𝑐𝑑 ∈ 𝑅

1×𝑛, 𝑎𝑐 input of the missile acceleration, 𝑐𝑚 = 𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑐 is a 

constant coefficient, 𝑡𝑔𝑜 is the remaining time to collision (time-to-go), 𝑣𝑐 is the constant closing 

velocity, 𝑣𝑚 missile constant velocity magnitude, 𝜃𝑛 initial target aspect angle and 𝛿𝑛 initial ideal 

missile lead angle. 

Now, as shown in section 2.5 and in Figure 2.6, three different subsystems can be distinguished 

in (3.11). With the internal numbering of the equations in (3.11) the subsystems are: one, the 

closed-loop system, governed by equations (3) and (5); two, a subsystem that begins with 𝑥3 =

ω and ends with 𝑥2 = 𝜆, equation (2) forms this relation; three, a subsystem that begins with 

𝑎𝑚 and ends with 𝑥1 = 𝜌, in equations (1) and (4).  

The closed-loop system connects the missile acceleration command with the line of sight angle-

rate derivative and it possesses the main stability properties of the system. Therefore, this part 

is of our interest in the current chapter. 

The next chapter will be devoted to the analysis of the two other subsystems. 

Regarding all that, the final form to serve as the basis for the transformation in the next section 

is summed-up by the following:  

 
𝑥̇ =

2

𝑡𝑔𝑜
⋅ 𝑥 −

𝑐𝑜𝑠 𝛿𝑛
𝑣𝑚 ⋅ 𝑡𝑔𝑜

⋅ 𝑐𝑑 ⋅ 𝑥𝑑 

𝑥̇𝑑 = 𝐴𝑑 ⋅ 𝑥𝑑 + 𝑏𝑑 ⋅ 𝑁 ⋅ 𝑣𝑚 ⋅ 𝑥 

(3.12) 

Where subscript 𝑛 stands for nominal, subscript 𝑑 stands for dynamics,  𝑥 = 𝜔 is the LOS rate state 

variable, 𝑥𝑑 ∈ 𝑅
𝑛×1 is the state vector of the missile dynamics with state matrix 𝐴𝑑 ∈ 𝑅

𝑛×𝑛 and vectors 

𝑏𝑑 ∈ 𝑅
𝑛×1, 𝑐𝑑 ∈ 𝑅

1×𝑛, 𝑡𝑔𝑜 is the remaining time to collision (time-to-go), 𝑣𝑚 missile constant velocity 

magnitude, 𝛿𝑛 initial ideal missile lead angle, 𝑁 constant navigation gain. 



 

45 

  

With initial conditions 𝑥0 ∈ 𝑅
(𝑛+1)×1 and the following expressions:  

 

𝛿𝑛 = 𝑠𝑖𝑛
−1(𝑠𝑖𝑛(𝜃𝑛) ⋅ 𝑣𝑇/𝑣𝑚) = 𝛿0 − 𝛿𝑒𝑟𝑟 

𝑡𝑔𝑜 = 𝑡𝑓 − 𝑡 

𝑡𝑓 = 𝜌0/𝑣𝑐  

𝑣𝑐 = 𝑣𝑚 ⋅ 𝑐𝑜𝑠 𝛿𝑛 − 𝑣𝑇 ⋅ 𝑐𝑜𝑠 𝜃𝑛 

(3.13) 

Where subscript 𝑛 stands for nominal, subscript 0 denotes initial time 𝑡0, 𝑣𝑚 missile velocity, 𝛿 missile 

lead angle, 𝛿𝑒𝑟𝑟 initial heading error, 𝑣𝑇 target constant velocity magnitude, 𝑣𝑐 closing velocity, 𝑡𝑔𝑜 is 

time-to-go, 𝑡𝑓 is the flight time, 𝑡 is the time that elapsed since the initial time 𝑡0, 𝜌 line of sight range. 

Let 𝑥 and 𝑥𝑑 be unified with a single state vector 𝑥𝑑𝑒: 

  𝑥𝑑𝑒 = [
𝑥
𝑥𝑑
] ∈ 𝑅𝑛+1×1 (3.14) 

Where 𝑥𝑑𝑒 ∈ 𝑅
𝑛+1×1 is unified state vector,  𝑥 = 𝜔 is the LOS rate state variable, 𝑥𝑑 ∈ 𝑅

𝑛×1 is the 

state vector of the missile dynamics. 

3.3.2. Linear Transformation 

The following notation is valid for the equations in the section: 

𝐴𝑑 𝑛 × 𝑛 state matrix of the missile dynamics 
𝑎𝑐 Missile lateral acceleration input command 

𝑎𝑚 Missile lateral output acceleration 

𝑏𝑑 𝑛 × 1 input vector of the missile dynamics 

𝑐𝑑 1 × 𝑛 output vector of the missile dynamics 

𝑐𝑣 Constant (𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑚) 
𝐼 Unit matrix of order 𝑛 

𝑁 Navigation gain 

𝑁′ Adjusted navigation gain 

𝜑 Integration variable 

𝑠 Laplace variable 

𝑡 Time variable 

𝑇𝑒 𝑛 + 1 × 𝑛 + 1 linear transformation matrix  
𝑣𝑚 Missile velocity 

𝑥 LOS rate state variable (𝜔) 
𝑥0 Initial condition of the LOS rate  

𝑥𝑑 𝑛 × 1 state vector of missile dynamics  

𝑥𝑑0  𝑛 × 1 initial conditions vector of 𝑥𝑑 

𝑥𝑒 𝑛 + 1 × 1 extended state vector  
𝑧 𝑛 × 1 new state vector  

𝑧0 𝑛 × 1 initial conditions vector of 𝑧 
𝑧𝑒 𝑛 + 1 × 1 extended equivalent state vector  
𝑧𝑒0  𝑛 + 1 × 1 initial conditions vector of 𝑧𝑒 

System (3.12) can attain the mathematical form of (3.7) by the following linear transformation. 
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Based on the properties of the state transition matrix, vector 𝑥𝑑 of the missile dynamics in 

(3.12) can be represented by the integral form: 

 𝑥𝑑(𝑡) = 𝑒
𝐴𝑑⋅𝑡  ⋅ 𝑥𝑑0 + 𝑁 ⋅ 𝑣𝑚 ⋅ ∫ 𝑒𝐴𝑑⋅(𝑡−𝜑) ⋅ 𝑏𝑑 ⋅ 𝑥(𝜑) ⋅ 𝑑𝜑

𝑡

0

 
(3.15) 

Let 𝑢 = 𝑥(𝜑) and 𝑑𝑣 = 𝑁 ⋅ 𝑣𝑚 ⋅  𝑒
𝐴𝑑⋅(𝑡−𝜑) ⋅ 𝑏𝑑 ⋅ 𝑑𝜑, integration by parts gives: 

 

𝑥𝑑(𝑡) = 𝑒
𝐴𝑑⋅𝑡  ⋅ 𝑥𝑑0 − 𝑁 ⋅ 𝑣𝑚 ⋅ 𝑥(𝑡) ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑 + 𝑁 ⋅ 𝑣𝑚 ⋅  𝑥0 ⋅ 𝑒
𝐴𝑑𝑡 ⋅ 𝐴𝑑

−1

⋅ 𝑏𝑑 + 𝑁 ⋅ 𝑣𝑚 ⋅ ∫ 𝑒𝐴𝑑⋅(𝑡−𝜑) ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑 ⋅ 𝑥̇(𝜑) ⋅ 𝑑𝜑

𝑡

0

 
(3.16) 

Define the new variable 𝑧: 

 

𝑧(𝑡) = 𝑒𝐴𝑑𝑡 ⋅ (𝑥𝑑0 + 𝑁 ⋅ 𝑣𝑚 ⋅  𝑥0 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑)

+ 𝑁 ⋅ 𝑣𝑚 ⋅ ∫ 𝑒𝐴𝑑⋅(𝑡−𝜑) ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑 ⋅ 𝑥̇(𝜑) ⋅ 𝑑𝜑

𝑡

0

 
(3.17) 

In terms of 𝑧(𝑡), 𝑥𝑑(𝑡) is given by: 

 
𝑥𝑑(𝑡) = 𝑧(𝑡) − 𝑁 ⋅ 𝑣𝑚 ⋅ 𝑥(𝑡) ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑 (3.18) 

𝑧(𝑡) in (3.17) is given in the general form of system-state response in terms of the matrix 

exponential 𝑒𝐴𝑑𝑡. From this general form, the set of state equations for 𝑧(𝑡) is extracted as: 

 

𝑧̇(𝑡) = 𝐴𝑑 ⋅ 𝑧(𝑡) + 𝑁 ⋅ 𝑣𝑚 ⋅ 𝑥̇(𝑡) ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑 

𝑧0 = 𝑥𝑑0 + 𝑁 ⋅ 𝑣𝑚 ⋅ 𝑥0 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑 

(3.19) 

Substitution of (3.18) and (3.19) back to (3.12) yields: 

 
𝑥̇(𝑡) =

2

𝑡𝑔𝑜
⋅ 𝑥(𝑡) −

𝑐𝑜𝑠 𝛿𝑛
𝑣𝑚 ⋅ 𝑡𝑔𝑜

⋅ 𝑐𝑑 ⋅ (𝑧(𝑡) − 𝑁 ⋅ 𝑣𝑚 ⋅ 𝑥(𝑡) ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑) 

𝑧̇(𝑡) = 𝐴𝑑 ⋅ 𝑧(𝑡) + 𝑁 ⋅ 𝑣𝑚 ⋅ 𝑥̇(𝑡) ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑 

(3.20) 

Equivalently:  

 
𝑥̇(𝑡) =

2

𝑡𝑔𝑜
⋅ 𝑥(𝑡) +

𝑐𝑜𝑠 𝛿𝑛
𝑡𝑔𝑜

⋅ 𝑁 ⋅ 𝑥(𝑡) ⋅ 𝑐𝑑 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑 −

𝑐𝑜𝑠 𝛿𝑛
𝑣𝑚 ⋅ 𝑡𝑔𝑜

⋅ 𝑐𝑑 ⋅ 𝑧(𝑡) 

𝑧̇(𝑡) = 𝑁 ⋅ 𝑣𝑚 ⋅ 𝑥̇(𝑡) ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑 + 𝐴𝑑 ⋅ 𝑧(𝑡) 

(3.21) 

With initial conditions 𝑥0 ∈ 𝑅
1×1 for 𝑥 and 𝑧0 = 𝑥𝑑0 + 𝑁 ⋅ 𝑣𝑚 ⋅ 𝑥0 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑 ∈ 𝑅
𝑛×1 for 𝑧. 

Recall (1.17), the overall gain of the guidance loop has to preserve the navigation gain: 
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 −𝑐𝑑 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑 = 1 (1.17) 

Define the adjusted navigation gain: 

 
𝑁′ = 𝑐𝑜𝑠 𝛿𝑛 ⋅ 𝑁 (3.22) 

And let another constant: 

 
𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑚 = 𝑐𝑣 (3.23) 

𝑐𝑣 is scalar. Its inverse representation as 𝑣𝑚/ 𝑐𝑜𝑠 𝛿𝑛 = 𝑐𝑣
−1 is just for presentation purposes.   

(3.21) takes the form:  

 
𝑥̇(𝑡) =

2 − 𝑁′

𝑡𝑔𝑜
⋅ 𝑥(𝑡) −

𝑐𝑣
𝑡𝑔𝑜

⋅ 𝑐𝑑 ⋅ 𝑧(𝑡) 

𝑧̇(𝑡) = 𝑐𝑣
−1 ⋅ 𝑁′ ⋅ 𝑥̇(𝑡) ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑 + 𝐴𝑑 ⋅ 𝑧(𝑡) 

(3.24) 

With 𝑥0 and 𝑧0 = 𝑥𝑑0 + 𝑐𝑣
−1 ⋅ 𝑁′ ⋅ 𝑥0 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑 

With the substitution of 𝑥̇(𝑡) and some arrangement, the equivalent form of (3.12) is given by: 

 

𝑥̇(𝑡) =
2 − 𝑁′

𝑡𝑔𝑜
⋅ 𝑥(𝑡) −

𝑐𝑣
𝑡𝑔𝑜

⋅ 𝑐𝑑 ⋅ 𝑧(𝑡) 

𝑧̇(𝑡) = 𝐴𝑑 ⋅ 𝑧(𝑡) +
𝑁′

𝑡𝑔𝑜
⋅ 𝑧(𝑡) + 𝑐𝑣

−1 ⋅
𝑁′

𝑡𝑔𝑜
⋅ (2 − 𝑁′) ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑 ⋅ 𝑥(𝑡) 

(3.25) 

And initial conditions 𝑥0 and 𝑥𝑑0 + 𝑐𝑣
−1 ⋅ 𝑁′ ⋅ 𝑥0 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑. 

𝑥 and 𝑧 can be unified with a single state vector 𝑧𝑒: 

 𝑧𝑒 = [
𝑥
𝑧
] ∈ 𝑅𝑛+1×1 (3.26) 

The relation of 𝑥𝑑 and 𝑧 as it appears in (3.18) can be expressed through the transformation 

matrix 𝑇𝑒:  

 𝑧𝑒 = 𝑇𝑒 ⋅ 𝑥𝑒 (3.27) 

Where:  

 𝑇𝑒 = (
1 0⋯0

𝑁 ⋅ 𝑣𝑚 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑 1

) ∈ 𝑅𝑛+1×𝑛+1 (3.28) 

Since the determinant of 𝑇𝑒 is nonzero (𝑑𝑒𝑡 𝑇𝑒 = 1), matrix 𝑇𝑒 is nonsingular, having only 

time-constant parameters, systems (3.12) and (3.25) are internally equivalent with the same 

dynamic characteristics.  
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The next theorem analyzes the stability of system (3.25) whose state vector is the unified vector 

𝑧𝑒.  

3.4. System Analysis 

Theorem 1 

Let system (3.12) be represented in form (3.25), if 

c.1. The dynamic matrix 𝐴𝑑 is Hurwitz, and 

c.2. 𝑁′ > 2 

Then the system is asymptotically stable in the sense of Definition 2.  

Remark: Condition c.1 derives straightforwardly from the requirement of the system to be 

transformed into (3.25). Condition c.2 derives from inequality (3.41) and is well known for 

stability of proportional navigation systems [8] [7] [11]. 

Proof  

The proof for stability of the equivalent system (3.25) is based on the Lyapunov candidate 

function: 

 
𝑣(𝑧𝑒) = 𝑥

2(𝑡) + 𝑧𝑇(𝑡) ⋅ 𝐻 ⋅ 𝑧(𝑡) (3.29) 

Where 𝑣(𝑧𝑒) is a scalar function of vector argument 𝑧𝑒, 𝑧𝑒 ∈ 𝑅
(𝑛+1)×1 is the state vector of the 

equivalent system (3.25) with initials vector 𝑧𝑒0, 𝑥 ∈ 𝑅1×1 is the LOS rate state, 𝑧 ∈ 𝑅𝑛×1 is a state 

vector in the equivalent system (3.25) (superscript 𝑇 stands for the transformation operator), and 𝐻 is 

the solution of the Lyapunov equation: 

 
𝐴𝑑
𝑇 ⋅ 𝐻 + 𝐻 ⋅ 𝐴𝑑 = −4 ⋅ 𝐼 (3.30) 

Where 𝐴𝑑 ∈ 𝑅
𝑛×𝑛 is state matrix of the missile dynamics and is the time invariant part of 𝑧(𝑡), 𝐼 is unit 

matrix of order 𝑛.  

The notations used for (3.29), (3.30), with the following, are valid for the rest of the section: 

𝛼𝑗 𝑗 = 1, 2 extremum functions of Lyapunov inequality terms  

𝑏𝑑 𝑛 × 1 input vector of the missile dynamics 

𝑐𝑑 1 × 𝑛 output vector of the missile dynamics 
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𝑐𝑣 Constant (𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑚) 
𝜆𝑗 𝑗 = 1. . 𝑛 eigenvalues of matrix 𝐻  

𝑁′ Adjusted navigation gain 

𝑡𝑓 Total flight time  

𝑡𝑔𝑜 Time-to-go, remained time to collision 

𝜏1 Positive – time index – constant 

𝜏2 Positive – time index – constant 

𝑣𝑚 Missile velocity 

𝑣𝑗  𝑗 = 1,2,3 temporal auxiliary functions  

Let’s take the time derivative of Lyapunov function 𝑣: 

 𝑣̇ = 2 ⋅ 𝑥 ⋅ 𝑥̇ + 2 ⋅ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝑧̇ (3.31) 

Substitution of 𝑥̇ and 𝑧̇ of the equivalent system (3.25) and arranging the terms in ascending 

order with respect to 𝑧 yield: 

 

𝑣̇ = 2 ⋅
2 − 𝑁′

𝑡𝑔𝑜
⋅ 𝑥2 − 2 ⋅

𝑐𝑣
𝑡𝑔𝑜

⋅ 𝑥 ⋅ 𝑐𝑑 ⋅ 𝑧

+ 2 ⋅ 𝑐𝑣
−1 ⋅

𝑁′

𝑡𝑔𝑜
⋅ (2 − 𝑁′) ⋅ 𝑥 ⋅ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑

+ 2 ⋅
𝑁′

𝑡𝑔𝑜
⋅ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝑧 + 2 ⋅ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝐴𝑑 ⋅ 𝑧 

(3.32) 

The linear terms in 𝑧 and those which are factors of 1/𝑡𝑔𝑜 are aimed now to be replaced with 

equivalent quadratic expressions as implied by 𝑣1 to 𝑣3:  

 

𝑣1 = 𝑧
𝑇 ⋅ 𝑧 + 2 ⋅ 𝑧𝑇 ⋅

𝑐𝑣
𝑡𝑔𝑜

⋅ 𝑥 ⋅ 𝑐𝑑
𝑇 + (

𝑐𝑣
𝑡𝑔𝑜

⋅ 𝑥 ⋅ 𝑐𝑑
𝑇)

𝑇

⋅ (
𝑐𝑣
𝑡𝑔𝑜

⋅ 𝑥 ⋅ 𝑐𝑑
𝑇)

= (𝑧 +
𝑐𝑣
𝑡𝑔𝑜

⋅ 𝑥 ⋅ 𝑐𝑑
𝑇)

𝑇

⋅ (𝑧 +
𝑐𝑣
𝑡𝑔𝑜

⋅ 𝑥 ⋅ 𝑐𝑑
𝑇) ≥ 0  

(3.33) 

 

𝑣2 = 𝑧
𝑇 ⋅ 𝑧 −  2 ⋅ 𝑐𝑣

−1 ⋅
𝑁′

𝑡𝑔𝑜
⋅ (2 − 𝑁′) ⋅ 𝑥 ⋅ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑

+ (𝑐𝑣
−1 ⋅

𝑁′

𝑡𝑔𝑜
⋅ (2 − 𝑁′) ⋅ 𝑥 ⋅ 𝐻 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑)

𝑇

⋅ (𝑐𝑣
−1 ⋅

𝑁′

𝑡𝑔𝑜
⋅ (2 − 𝑁′) ⋅ 𝑥 ⋅ 𝐻 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑) 

(3.34) 
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= (𝑧 − 𝑐𝑣
−1 ⋅

𝑁′

𝑡𝑔𝑜
⋅ (2 − 𝑁′) ⋅ 𝑥 ⋅ 𝐻 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑)

𝑇

⋅ (𝑧 − 𝑐𝑣
−1 ⋅

𝑁′

𝑡𝑔𝑜
⋅ (2 − 𝑁′) ⋅ 𝑥 ⋅ 𝐻 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑) ≥ 0  

 

𝑣3 = 𝑧
𝑇 ⋅ 𝑧 −  2 ⋅

𝑁′

𝑡𝑔𝑜
⋅ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝑧 + (

𝑁′

𝑡𝑔𝑜
⋅ 𝐻 ⋅ 𝑧)

𝑇

⋅ (
𝑁′

𝑡𝑔𝑜
⋅ 𝐻 ⋅ 𝑧)

= (𝑧 −
𝑁′

𝑡𝑔𝑜
⋅ 𝐻 ⋅ 𝑧)

𝑇

⋅ (𝑧 −
𝑁′

𝑡𝑔𝑜
⋅ 𝐻 ⋅ 𝑧) ≥ 0  

(3.35) 

Substitution of 𝑣1,2,3 with the subtraction of the extra terms brings us to the following form of 

the Lyapunov derivative:  

 

𝑣̇ = 2 ⋅
2 − 𝑁′

𝑡𝑔𝑜
⋅ 𝑥2 − 𝑣1 + 𝑧

𝑇 ⋅ 𝑧 + (
𝑥 ⋅ 𝑐𝑣
𝑡𝑔𝑜

)

2

𝑐𝑑 ⋅ 𝑐𝑑
𝑇 − 𝑣2 + 𝑧

𝑇 ⋅ 𝑧

+ (𝑐𝑣
−1 ⋅

𝑁′

𝑡𝑔𝑜
⋅ (2 − 𝑁′) ⋅ 𝑥)

2

⋅ (𝐻 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑)

𝑇

⋅ (𝐻 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑) − 𝑣3 + 𝑧

𝑇 ⋅ 𝑧 + (
𝑁′

𝑡𝑔𝑜
)

2

⋅ (𝐻 ⋅ 𝑧)𝑇 ⋅ (𝐻 ⋅ 𝑧)

+ 2 ⋅ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝐴𝑑 ⋅ 𝑧 

(3.36) 

Now, the last term in (3.36) equals the left-hand side of the Lyapunov equation (3.30) that can 

be introduced here to yield: 

 

𝑣̇ = −𝑣1 − 𝑣2 − 𝑣3 − 𝑧
𝑇 ⋅ 𝑧 + 2 ⋅

2 − 𝑁′

𝑡𝑔𝑜
⋅ 𝑥2 + (

𝑥 ⋅ 𝑐𝑣
𝑡𝑔𝑜

)

2

𝑐𝑑 ⋅ 𝑐𝑑
𝑇

+ (𝑐𝑣
−1 ⋅

𝑁′

𝑡𝑔𝑜
⋅ (2 − 𝑁′) ⋅ 𝑥)

2

⋅ (𝐻 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑)

𝑇

⋅ (𝐻 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑) + (

𝑁′

𝑡𝑔𝑜
)

2

⋅ (𝑧𝑇 ⋅ 𝐻𝑇 ⋅ 𝐻 ⋅ 𝑧) 

 

(3.37) 

From this last step let’s withdraw the first three non-negative terms to arrive at the following 

inequality: 
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𝑣̇

≤  −𝑧𝑇 ⋅ 𝑧 + 2 ⋅
2 − 𝑁′

𝑡𝑔𝑜
⋅ 𝑥2 + (

𝑥 ⋅ 𝑐𝑣
𝑡𝑔𝑜

)

2

𝑐𝑑 ⋅ 𝑐𝑑
𝑇

+ (𝑐𝑣
−1 ⋅

𝑁′

𝑡𝑔𝑜
⋅ (2 − 𝑁′) ⋅ 𝑥)

2

⋅ (𝐻 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑)

𝑇 ⋅ (𝐻 ⋅ 𝐴𝑑
−1 ⋅ 𝑏𝑑) + (

𝑁′

𝑡𝑔𝑜
)

2

⋅ (𝑧𝑇 ⋅ 𝐻𝑇 ⋅ 𝐻 ⋅ 𝑧) 

(3.38) 

Which holds for any time on the interval (for further details on the relation of 𝑡𝑔𝑜 and 𝜏1 see 

section 3.2): 

 
0 ≤ 𝜏1 ≤  𝑡𝑔𝑜 (3.39) 

The following steps are intended for the simplification of the inequality form of (3.38). 

The first simplification uses these positions: 

1. 0 ≤ 𝜆1 ≤ 𝜆2… ≤ 𝜆𝑛 are the eigenvalues of matrix 𝐻, based on the properties of 𝐻 as 

symmetric and positive, they exist: 

 
0 ≤ 𝜆1 ⋅ 𝑧

𝑇 ⋅ 𝑧 ≤ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝑧 ≤ 𝜆𝑛 ⋅ 𝑧
𝑇 ⋅ 𝑧 (3.40) 

2. Condition c.2 (𝑁′ > 2 or 𝑁′ − 2 > 0). 

3. 𝜏1 ≤ 𝑡𝑔𝑜 

Applying these three, the first two terms in (3.38) reduce to the form: 

 

−𝑧𝑇 ⋅ 𝑧 − 2 ⋅
𝑁′ − 2

𝑡𝑔𝑜
⋅ 𝑥2 ≤ −

1

𝜆𝑛
⋅ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝑧 − 2 ⋅

𝑁′ − 2

𝑡𝑔𝑜
⋅ 𝑥2 

=  
−
𝑡𝑔𝑜
𝜆𝑛
⋅ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝑧 − 2 ⋅ (𝑁′ − 2) ⋅ 𝑥2

𝑡𝑔𝑜
 

≤
−
𝜏1
𝜆𝑛
⋅ 𝑧𝑇 ⋅ 𝐻 ⋅ 𝑧 − 2 ⋅ (𝑁′ − 2) ⋅ 𝑥2

𝑡𝑔𝑜
 

≤  −𝑚𝑖𝑛 (
𝜏1
𝜆𝑛
, 2 ⋅ (𝑁′ − 2) ) ⋅

𝑣(𝑥𝑒)

𝑡𝑔𝑜
 

(3.41) 

Let’s denote this last term with: 

 
𝛼1 = 𝑚𝑖𝑛 (

𝜏1
𝜆𝑛
, 2 ⋅ (𝑁′ − 2) ) (3.42) 
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Second simplification, pertaining the last three terms in (3.38), is achieved by determining 

their supremum with: 

 

𝛼2 = 𝑚𝑎𝑥 (
𝑁′

2

𝜆1
, 𝑐𝑣
2 ⋅ 𝑐𝑑 ⋅ 𝑐𝑑

𝑇

+ (𝑐𝑣
−1 ⋅ 𝑁′ ⋅ (2 − 𝑁′))

2
⋅ (𝐻 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑)
𝑇 ⋅ (𝐻 ⋅ 𝐴𝑑

−1 ⋅ 𝑏𝑑)) 

(3.43) 

When 𝛼2 is multiplied by 𝑣(𝑧𝑒)/𝑡𝑔𝑜
2 . 

Notice that since 𝑁′ > 2, according to condition c.2 of the theorem, the constants 𝛼1 and 𝛼2 

have positive values.  

The first argument of (3.43) is a reduction of the last term of (3.38): 

 (
𝑁′

𝑡𝑔𝑜
)

2

⋅ (𝑧𝑇 ⋅ 𝐻𝑇 ⋅ 𝐻 ⋅ 𝑧) = 𝑁′
2
⋅
𝑧𝑇 ⋅ 𝐻2 ⋅ 𝑧

𝑡𝑔𝑜
2

≤ 
𝑁′

2

𝜆1
⋅
𝑧𝑇 ⋅ 𝐻 ⋅ 𝑧

𝑡𝑔𝑜
2

 (3.44) 

All the above yields the final form of the Lyapunov inequality:  

 
𝑣̇(𝑧𝑒) ≤ (

𝛼2
𝑡𝑔𝑜2

−
𝛼1
𝑡𝑔𝑜
) ⋅ 𝑣(𝑧𝑒) (3.45) 

To solve (3.45), divide both sides by 𝑣(𝑧𝑒) and integrate with respect to 𝑡: 

 𝑣(𝑧𝑒) ≤ 𝑒
𝛼2⋅(

1
𝑡𝑔𝑜

−
1
𝑡𝑓
)
⋅ (
𝑡𝑔𝑜

𝑡𝑓
)

𝛼1

⋅ 𝑣(𝑧𝑒0) (3.46) 

On 𝜏1 ≤ 𝑡𝑔𝑜, 𝑣(𝑧𝑒) attains a boundary by strengthening the main inequality solution (3.46) 

with: 

 
𝑚𝑎𝑥
𝜏1≤𝑡𝑔𝑜

𝑣(𝑧𝑒) ≤ 𝑒
𝛼2
𝜏1 ⋅ 𝑣(𝑧𝑒0) (3.47) 

Which approves the system is uniformly stable in the sense of Definition 1. 

On 𝜏1 ≤ 𝑡𝑔𝑜 ≤ 𝜏2, 𝑣(𝑧𝑒) attains asymptotic convergence, with respect to 𝑡𝑓, by strengthening 

(3.46) with: 

 

 
𝑚𝑎𝑥

𝜏1≤𝑡𝑔𝑜≤𝜏2
𝑣(𝑧𝑒)  ≤ 𝑒

𝛼2
𝜏1 ⋅  (

𝜏2
𝑡𝑓
)

𝛼1

⋅ 𝑣(𝑧𝑒0) (3.48) 

Which approves the system is asymptotically stable in the sense of Definition 2. 

Hence, Theorem 1 is proven.  
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Derivations from Theorem 1 – Numerical Analysis  

During the proof of Theorem 1 the constants 𝛼1 and 𝛼2 were derived. The conditions prove 

their values to be positive. Finally these constants determine both the inequalities for uniform 

stability and for asymptotic stability. Therefore it is important, from a system design point of 

view, to analyze the properties of the stability results in terms of these constants and their 

dependence on the system parameters.  

Let: 𝜏1 = 0.1, 𝜏2 = 1,𝑁
′ = 3. With these substitutions, (3.42) becomes: 

 𝛼1 =
0.1

𝜆𝑛
 (3.49) 

Where 𝛼1 positive constant and 𝜆𝑛 highest eigenvalue of matrix 𝐻 – the solution of the Lyapunov 

equation (see 3.30). 

As inequality (3.48) states, the asymptotic convergence with respect to 𝑡𝑓 grows with powers 

of 𝛼1. It is simple therefore to see that the rate of convergence is a function of the system 

parameters that solve the Lyapunov equation (3.30). 

For a first example let 𝐴𝑑 be a state-matrix of a first order system:  

 

 

𝐴𝑑 = −
1

𝜏𝑚
 (3.50) 

Where 𝐴𝑑 state-matrix of a first order system and 𝜏𝑚 is a positive time constant. 

As 𝜏𝑚 > 0 the system is Hurwitz. Solving (3.30) gives 𝐻 = 2 ⋅ 𝜏𝑚, which is also the maximum 

and the only eigenvalue; the change of 𝛼1 with change of 𝜏𝑚 is shown in Figure 3.2: 
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Figure 3.2: 𝛼1 vs 𝜏𝑚 for 1st order system 

At the points 𝜆𝑛 = 2 ⋅ 𝜏𝑚 = 0.1, 0.5, 1, the values of 𝛼1 are 0.5, 0.1, 0.05 respectively. For 

these values of 𝛼1, the expression (
1

𝑡𝑓
)
𝛼1

 which determines the rate of convergence for the 

system appears in Figure 3.3: 

 

Figure 3.3: Convergence rate vs 𝑡𝑓 vs 𝛼1 for 1st order system 

According to Figure 3.3 the convergence is obviously faster for higher values of 𝛼1, which 

happen for shorter time constants 𝜏𝑚.   

In the second example a missile with dynamics of second order is engaged. Now 𝐴𝑑 is given 

by:  
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𝐴𝑑 = (
0 1

−𝜔𝑛
2 −2 ⋅ 𝜁 ⋅ 𝜔𝑛

) (3.51) 

Where 𝐴𝑑 state matrix of second order system, 𝜔𝑛 natural frequency and 𝜁 damping ratio. 

Here again positive 𝜔𝑛 and 𝜁 prove left-half poles, whereas the solution of the Lyapunov 

equation (3.30) is now more complicated: 

 

 

𝐻 =

(

 
 

1 + 4 ⋅ 𝜁2 +𝜔𝑛
2

𝜁 ⋅ 𝜔𝑛

2

𝜔𝑛2

2

𝜔𝑛2
 

1 + 𝜔𝑛
2

𝜁 ⋅ 𝜔𝑛
3
)

 
 

 (3.52) 

Where 𝐻 is the solution of Lyapunov equation (3.30), 𝜔𝑛 natural frequency and 𝜁 damping ratio. 

To examine 𝛼1 with change of 𝜁 we set 𝜔𝑛 = 1 𝑟/𝑠. The results are illustrated in Figure 3.4: 

 

Figure 3.4: 𝛼1 vs 𝜁 for 2nd order system 

As presented earlier, the higher 𝛼1 provides better results in terms of quick convergence. Then 

a natural candidate-point for best performance is = 0.8, where the line in Figure 3.4 reaches its 

maximum.  

The performances of the system with respect to 𝜁 = 0.8, and for comparison purposes also 𝜁 =

0.2 and 𝜁 = 1, appear in Figure 3.5. Since the rate of convergence of the second order system 

is quite lower with respect to the first order, then the range of values in Figure 3.5 is focused 

in the region where variations of the function take place.  
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Figure 3.5: Convergence vs 𝑡𝑓 vs 𝛼1 for 2nd order system 

Indeed, 𝜁 = 0.8 provides best results in terms of asymptotic convergence.  

The analysis of the stability as exemplified here, and was derived from the results of the 

extended Lyapunov approach, is a powerful tool for the design of guidance systems, as it 

provides a straightforward indication not only to the system stability but also for best 

parameters selection in terms of rate of convergence.  

3.5. Summary 

Chapter 3 introduced the analysis of the guidance system with an extended approach of 

Lyapunov stability. This approach was found significant because it provides tools to investigate 

time-varying systems which present a singular point. Based on that method we investigated the 

principle equation of the linearized system, namely the relation of the acceleration command 

to the line of sight rate derivative. Now that this problematic subsystem proved to have 

conditions for asymptotic stability, we can move to the next chapter to consider the other 

relations of the acceleration command and the system states.   
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4. Miss Distance Analysis 
The differential equation that connects the missile acceleration command with the line of sight 

rate was investigated in the previous chapter and was found to have conditions for attaining 

asymptotic stability. Still there remains to consider the other states, which can be viewed as 

system output, since their final values determine the miss distance. To complete this 

investigation, the following chapter introduces stability-analysis of the subsystem that 

possesses the missile-target relative position.  

4.1. Miss Distance Evaluation  

The ultimate objective of a guided missile is to disable or destroy the target. But inaccuracies, 

limitations and time-lags affect the missile as to flying close to the target but not necessarily 

hitting it directly. With the help of high explosives, near misses can be converted to successful 

intercepts. For that reason the guidance system has to cause the miss-distance to be as small as 

possible. To produce reliable evaluation of the performance of the guidance system the miss-

distance measure and the exact time that it occurs, have to be considered separately.  

4.1.1. Computational Procedure   

When running an ideal system the moment in which the simulation should stop is easily 

evaluated. As we saw in section 2.1 when ideal conditions exist the total flight time is linear 

with respect to the distance to the target:  

 
𝑡𝑓 = 𝜌0/𝑣𝑐 (2.5) 

Where 𝑡𝑓 is the flight time from the measure of the range until collision, 𝜌0 line of sight range at fixed 

moment 𝑡0, 𝑣𝑐 closing velocity.  

But for the general case the conditions to stop the guidance must get real-time inputs of the 

distance to the target to announce miss-distance time. In addition, the way to measure the miss-

distance is at the most a question of the interception objective. However, the view common for 

everyone is that the missile guidance has to close, as much as possible, the distance separating 

it with the target. Then the criterion at the most general level, for stopping the guidance 

simulation, is based on the definition that states that the miss-distance is the closest approach 
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of the missile to the target. An equivalent definition can be found in the Military Handbook of 

Missile Flight Simulation1 and the drawing in Figure 4.1 was borrowed from there.  

Another important challenge is the accuracy of the miss-distance calculation in the numerical 

simulation. As already shown extensively, the system introduces a singular point in the vicinity 

of the impact point. Numerically it is a major source of errors and the treatment of it depends 

on the engaged model and the simulation platform.   

 

Figure 4.1: Miss-distance vector diagram (taken from Military Handbook of Missile Flight Simulation). The 

descriptions in the handbook for the symbols in the illustration are: 𝑀𝑑 miss distance vector at time of closet 

approach directed from missile to target, 𝑅 range vector, 𝑢𝑉𝑇/𝑀 unit vector in direction of relative velocity 

vector 𝑉𝑇/𝑀. 

In the view of computational procedure, the miss-distance in the sense that is given above, 

occurs when the line of sight vector 𝑟 (see equation (1.2)) reaches a minimum. Applying it 

includes cyclic calculation of the range rate 𝜌̇ and catching the time of sign-changing, namely 

the time when the range changes from decreasing to increasing. This procedure serves us to 

analyze the miss-distance in the following sections.  

                                                           
1 Missile Flight Simulation Part One Surface-to-Air Missiles, MIL-HDBK-1211(MI) 17 July 1995. In: Military 
Handbook. 1995 
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4.1.2. Miss Distance Output   

Let’s now return to section 3.3 where some arrangement provided us with the following form 

of the linearized system: 

 

𝑥̇1 = 𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃𝑛 ⋅ 𝑥5 

𝑥̇2 = 𝑥3 

𝑥̇3 =
2

𝑡𝑔𝑜
⋅ 𝑥3 −

𝑐𝑚
𝑡𝑔𝑜

⋅ 𝑐𝑑 ⋅ 𝑥𝑑 

𝑥̇5 =
1

𝑣𝑚
 ⋅ 𝑐𝑑 ⋅ 𝑥𝑑 

𝑥̇𝑑 = 𝐴𝑑 ⋅ 𝑥𝑑 + 𝑏𝑑 ⋅ 𝑎𝑐 

(4.1) 

Where subscript 𝑛 stands for nominal, subscript 𝑑 stands for dynamics,  [𝑥1, 𝑥2, 𝑥3, 𝑥5] = [𝜌, 𝜆, 𝜔, 𝛾𝑚] 

are the state variables, 𝑥𝑑 ∈ 𝑅
𝑛×1 is the state vector of the missile dynamics with state matrix 𝐴𝑑 ∈

𝑅𝑛×𝑛 and vectors 𝑏𝑑 ∈ 𝑅
𝑛×1, 𝑐𝑑 ∈ 𝑅

1×𝑛, 𝑎𝑐 input of the missile acceleration, 𝑐𝑚 = 𝑐𝑜𝑠 𝛿𝑛 /𝑣𝑐 is a 

constant coefficient, 𝑡𝑔𝑜 is the remaining time to collision (time-to-go), 𝑣𝑐 is the constant closing 

velocity, 𝑣𝑚 missile constant velocity magnitude, 𝜃𝑛 initial target aspect angle and 𝛿𝑛 initial ideal 

missile lead angle. 

Initial conditions to (4.1) are given by: 

 

𝑥10 = 0 

𝑥20 = 0 

𝑥30 = (𝑣𝑇 ⋅ 𝑠𝑖𝑛 𝜃0 − 𝑣𝑚 ⋅ 𝑠𝑖𝑛 𝛿0)/(𝑣𝑐 ⋅ 𝑡𝑓)  

𝑥40 = 0 

𝑥50 = 𝛿𝑒𝑟𝑟 

𝑥𝑑0 = 0 

(4.2)  

Where 𝑥0 ∈ 𝑅
(𝑛+5)×1 is the initial conditions vector of system to (4.1) , 𝑣𝑇 and 𝑣𝑚 target and missile 

velocities, 𝜃0 is the target aspect angle at time 𝑡0 and 𝛿0 is the missile lead angle at time 𝑡0, 𝛿𝑒𝑟𝑟 initial 

heading error – the deviation of the missile lead angle from the correct direction (see 1.9), 𝑥𝑑 state 

vector of missile dynamics of 𝑛𝑡ℎ order, 𝑣𝑐 is the constant closing velocity and 𝑡𝑓 is the flight time.  

(4.2) possesses the vector of initial conditions for (4.1) but in chapter 2 it was shown that for 

numerical analysis of the linear system, the reference solution about which the linearization 

was done, has to be summed with the solution of (4.1) (4.2). 

Examining (4.1), we distinguished three subsystems that share some variables with each other: 

the closed-loop system – that includes all the factors of 𝑡𝑔𝑜, from the missile acceleration to 
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the line of sight angle rate 𝜔. A second subsystem from 𝜔 to 𝜆. A third subsystem from 𝑎𝑚 to 

𝜌. The second and third subsystems contain a single integrator and two integrators in the output 

of the closed-loop system respectively. Then even though it was shown in the previous chapter 

that the closed-loop system with 𝜔 within, is asymptotically stable, that it is not yet guaranteed 

that the third system, containing the missile-target range 𝜌, is stable. Even the stability of the 

second system containing 𝜆 is uncertain. On the other hand the integration units are not 

sufficient conditions to deny its stability, since the system is time-varying, the laws of time-

invariant systems are not applicable to it. 

For each subsystem at the output of the closed-loop system we will try to determine stability 

in an input-output sense and we’ll do that by numerical simulation, by determining the input 

and inspecting 𝑦 = 𝜆 and 𝑦 = 𝜌 at the outputs. The theoretical basis for the analysis is given 

in the following definitions. 

4.2. Input – Output Stability   

Recall the nomenclature:  

𝑡 Time variable  

𝑡𝑓 Total flight time of a single process 

𝑡𝑔𝑜 𝑡𝑓 − 𝑡, Time-to-go, remaining time to collision 

𝜏1 Positive constant 

𝜏2 Positive constant (𝜏2 > 𝜏1) 

Definition 1 

System (4.1) is input-output stable from input 𝑢 to output 𝑦 if its own motion remains bounded 

on the time interval 𝜏1 ≤ 𝑡𝑔𝑜 ≤ 𝜏2 as 𝑡𝑓 → ∞. 

Definition 2 

System (4.1) is asymptotically stable from input 𝑢 to output 𝑦 if it is input-output stable and its 

own motion tends to zero on the time interval 𝜏1 ≤ 𝑡𝑔𝑜 ≤ 𝜏2 as 𝑡𝑓 → ∞. 

Notes on Definition 1 and Definition 2: 
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n.1. The notion of the time parameters 𝜏1, 𝜏2, was illustrated in Figure 3.1 (section 3.2). Recall 

also that as elucidated there, a single unit of time in the process is the time-length of a 

flight, therefore the sequence of final values 𝑦 = 𝑥(𝑡𝑓) with respect to the flight-times 𝑡𝑓 

is the process we want to test.  

n.2. Input in Definition 1 and Definition 2 refers to any input signal or set of initial conditions. 

It should be noted that any initial condition 𝑥𝑚0 can be represented as an input signal by: 

 𝑢 = 𝐼𝑚 ⋅ 𝑥𝑚0 ⋅ 𝛿(𝑡) (4.3) 

Where 𝑢 is an input signal equivalent to the desired initial condition, 𝐼𝑚 is the m-th column of the unit 

matrix, 𝑥𝑚0 is the desired initial condition of the m-th variable, 𝛿(𝑡) is the Dirac delta function, 𝑡 time 

variable.  

When the input is of initial conditions type, the sense of own motion of a system is its 

reaction to initial conditions, i.e. its free response. 

n.3. In the following tests the miss-distance analysis is performed with respect to an input 

which is initial conditions.   

4.2.1. Miss Distance Analysis 

Following Definition 1 and Definition 2, let the system input be any initial conditions vector 

𝑢 = 𝑥0 such that the initial state of 𝑥5 = 𝛾𝑚 is nonzero, 𝑥50 = 𝛿𝑒𝑟𝑟 ≠ 0.  

Referring back to the early chapters, 𝛿𝑒𝑟𝑟 is the deviation of the missile velocity from collision 

course with the target. 𝑥50 = 𝛿𝑒𝑟𝑟 ≠ 0 also means 𝑥30 = 𝜔0 ≠ 0 but from a physical point of 

view the deviation from collision course is led by an error in the velocity direction. 

Initial heading error is one of the main theoretical problems in missiles guidance. Target 

maneuvering and high-order dynamics are also central in this regard. The proposed analysis 

when examined with output 𝑦 = 𝜌(𝑡𝑓) explores the miss-distance with respect to heading error. 

The dynamics problem also finds an answer here. In opposition, the target in the following 

investigations is assumed as non-maneuvering.   

1st Heading Error 

Let: 

 𝛿𝑒𝑟𝑟 = −15° (4.4) 
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Where 𝛿𝑒𝑟𝑟 is the heading error.  

And let the system output be the sequence of last line of sight angles 𝑦 = 𝜆(𝑡𝑓), for unbounded 

increase of 𝑡𝑓. 

The importance of the system behavior with respect to this output, arises from its position one 

integrator after the closed-loop system, for which conditions to asymptotic stability were found 

in the previous chapter. Lack of conditions for stability of that subsystem makes useless the 

search for stability conditions of the system with output 𝑦 = 𝜌(𝑡𝑓), which possesses two 

integrators after the closed-loop system.   

Accordingly, Figure 4.2 presents the final LOS angle for increasing initial range, which is 

equivalent to an increment in 𝑡𝑓, for 𝛿𝑒𝑟𝑟 = −15°, and for three orders of dynamics of the 

linearized model. To view the results with respect to zero, the theoretical value of the LOS 

angle at 𝑡𝑓 was subtracted from the results of the simulation.  

 

Figure 4.2: Final LOS angle with respect to 𝑡𝑓 for heading error 𝛿𝑒𝑟𝑟 = −15°, for ideal dynamics and dynamics 

of 1st and 2nd order, linear system. 

Figure 4.2 shows that the response of the system in the transition-time is characterized by the 

dynamics part. It also shows that as the flight time increases the system converges into a small 

value around zero. But the important question is the behavior around zero, adherence to zero 

means the system is asymptotic stable and otherwise, not. With that regard, in Figure 4.3 is 

displayed a focused view of Figure 4.2, in an arbitrary interval of time, after the initial 

overshoot.  
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Figure 4.3: Focused view of the final LOS angle with respect to 𝑡𝑓 for heading error 𝛿𝑒𝑟𝑟 = −15°. 

By Figure 4.3 it is straightforwardly concluded that system (4.1) is asymptotic stable with 

respect to input 𝑥50 and output 𝑦 = 𝜆(𝑡𝑓). 

Let now the output be the miss-distance for increasing flight times, 𝑦 = 𝜌(𝑡𝑓). In Figure 4.4 

are displayed results for 𝛿𝑒𝑟𝑟 = −15°, for three orders of dynamics of the linearized model.   

 

Figure 4.4: Miss-distance with respect to 𝑡𝑓 for heading error 𝛿𝑒𝑟𝑟 = −15°, for ideal dynamics and dynamics of 

1st and 2nd order, linear system. 
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Figure 4.4 presents that the miss-distance, for each order of missile dynamics, converges to a 

small value close to zero, but not zero. A small constant gain, keeps the miss-distance from 

zero that two integrators cannot close.  

Figure 4.4 shows that system (4.1) is stable with respect to input 𝑢 = 𝑥𝑜 with 𝑥50 = −15° and 

output 𝑦 = 𝜌(𝑡𝑓), but not asymptotic stable with respect to the same conditions.  

2nd Heading Error 

Additional tests will be performed now for second heading error. Let: 

 𝛿𝑒𝑟𝑟 = −7.5° (4.5) 

Where 𝛿𝑒𝑟𝑟 is the heading error.  

Figure 4.5 and Figure 4.6 introduce the performances of the system with respect to 𝑦 = 𝜆(𝑡𝑓) 

and 𝑦 = 𝜌(𝑡𝑓) respectively. Figure 4.5 shows that similarly to the first heading error the system 

is asymptotic stable with respect to the LOS angle. Figure 4.6 shows that with respect to the 

miss distance the system is stable but not asymptotic stable.  

 

Figure 4.5: Final LOS angle with respect to 𝑡𝑓 for heading error 𝛿𝑒𝑟𝑟 = −7.5°, for ideal dynamics and dynamics 

of 1st and 2nd order, linear system. 
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Figure 4.6: Miss distance with respect to 𝑡𝑓 for heading error 𝛿𝑒𝑟𝑟 = −7.5°, for ideal dynamics and dynamics of 

1st and 2nd order, linear system. 

Let a third heading error, 𝛿𝑒𝑟𝑟 = −30. Figure 4.7 introduces the miss distance with respect to 

the three different heading errors for linear system with ideal dynamics.  

The steady state is our interest, which indicates that as the absolute value of the input is smaller 

so the constant error in the output is smaller, i.e. smaller miss-distance. Then the system with 

respect to miss distance output is stable about input 𝛿𝑒𝑟𝑟 ≠ 0 and is bounded with respect to a 

bounded change of the same input. 

 

Figure 4.7: Miss distance comparison for three different heading errors. 
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This is to note, the improvement of the results, or at least the preservation of the results, with 

respect to increase in flight time, which is equivalent to an increase of the range to target, 

reflects the stability characteristic of the guidance system. In general the performances of a 

missile may deteriorate with the increase in target range, because effects that were not 

considered here, such as combustion time and friction forces that slow the velocity down. In 

this case the conditions between one run to another are no longer similar and the stable 

character of the system becomes obscured by other phenomena.  

4.2.2. Summary 

Chapter 4 introduced an analysis of the guidance system with respect to miss-distance. A 

program based on the linearized model as developed in chapter 2, simulated the system in a 

series of conditions, distinct from each other by an increase of target range. It was demonstrated 

that for a given heading error serves as input, and miss distance as output, the system is stable 

in an input-output sense. It was also demonstrated that with respect to the same conditions the 

system is not asymptotic stable.   
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5. Summary and Conclusions  
n.1. The above work studies guidance systems employing a proportional navigation (PN) 

control law. The stability characteristics of the guidance system are at the center of the 

study. Starting with missile-target motion and ending with actual lateral acceleration of 

the missile, the guidance loop includes kinematics, guidance law and missile dynamics, 

each of them imposes its unique character on the overall system. 

n.2. The reference trajectory used for linearization is ideal collision-triangle conditions where 

the missile and the target travel in constant velocities, in straight lines. The derived model 

is time-varying.  

n.3. In the linearized model it is possible to distinguish an LTI part, which consists of the 

missile dynamics and the linearized kinematics, and time-varying part, consisting of a 

closed-loop about the LOS rate. The time-varying part depends on inverse terms of 𝑡𝑔𝑜 

which introduce a singular point at the vicinity of the impact point. Furthermore, two 

integrators separate the most interesting variable, i.e. the missile-target range, from the 

time-varying subsystem.  

n.4. Conditions for asymptotic stability of the closed-loop subsystem, from the acceleration 

command to the line of sight (LOS) angle rate 𝜔, are obtained. Due to the singular point 

that is present in 𝜔’s derivative, the stability of the system is investigated by an extended 

approach to Lyapunov, which examines stability of closed-loop systems with respect to 

unbounded increase of the total time 𝑡𝑓. To apply this approach, the system has been 

transformed linearly to an equivalent form, as required by the theory.  

n.5. Numerical simulation examined the stability of the overall system. Stability here is in 

input-output sense and it reflects the behavior of the miss-distance. While the results 

prove initial convergence of the miss-distance with respect to an ascending initial target 

range, later on the miss-distance oscillates about some small constants, where it is hard 

to determine what part of it is a natural response of the system and what is contributed 

by numerical errors. This is the weakness of the numerical analysis. But this approach 

was employed here because of the irrelevance of other methods. 

n.6. The results of the investigations so far indicate that asymptotic stability with respect to 

miss-distance in input-output sense, may actually be achieved with some compensation 

for the second integrator in the series after the closed-loop subsystem. The study of this 
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feedback loop is not of the scope of the work but most of the material required for its 

development is given here.   

n.7. While an asymptotic convergence of the miss-distance is not guaranteed, it was 

demonstrated to be bounded. Together with an analytic tool to adjust the rate of 

convergence of the acceleration command, the designer is provided with an advanced 

tool to develop the guidance system.  

n.8. The results derived in the work are applicable to pure proportional navigation (PPN), and 

even though the relative proximity of the true proportional navigation (TPN) version, the 

equations of motion should differ when the acceleration command is exerted not only in 

the normal component of the velocity, and the case then has to be considered separately. 

Regarding that, there are more difficult versions of PN, as the different biased commands, 

as Shneydor surveys in chapter 7 of his book, which definitely cannot be concluded from 

this work by similarity, and they require a study of their own.  

n.9. Finally, all the different subsystems of the missile as seeker and autopilot are considered 

here by linear time-invariant dynamics. In fact many of the challenges that a designer 

faces are in biases, saturations and other nonlinearities of the sensors and of the seeker 

above all. The treatment to this kind of errors, is in general within a complete solution 

which considers not just stability but also state-estimation and adaptive or optimal control 

elements in the guidance system.    
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Appendix 1 

The numerical analyses and the examples in this research are based on proportional navigation 

guidance simulation. The simulation program is written in Matlab and makes use of ode45 for 

the calculation of derivatives in the nonlinear model and ode23s in the linear model. 

The simulation suggests two options for missile dynamics – ideal and first order, both given in 

terms of state-space models. User input sets the initial conditions of the target initial range and 

the missile initial heading error with respect to the line of sight. 

Selective parts of the nonlinear model simulation are submitted here to the reader. 

Initialization 

% 

%   Time-Constant Parameters 

% 

Deg2Rad =   pi / 180;  

 

% 

%   Input Initialization 

% 

xT0    =   rng0;  

yT0    =   0; 

xM0    =   0;  

yM0    =   0; 

deltaErr=   deltaErrDeg * Deg2Rad; 

 

%  Initial Values of State Vector and Algebraic Variables 

%   X = [1-Rmt, 2-Lam, 3-Omg, 4-GamT, 5-GamM, 6-aM] 

%  Algebraic Variables 

%   Alg = [1-aMc,2-Del,3-Thet, 4-vC]  

Rmt0   =   sqrt((xT0 - xM0)^2 + (yT0 - yM0)^2);    %X(1) 

Lam0   =   asin((yT0 - yM0)/Rmt0);    %X(2) 

Thet0   =   TheTDeg * Deg2Rad;     %Alg(3) 

GamT0   =   Lam0 + Thet0;       %X(4)   

 

DelCorrect  =   asin(vT / vM * sin(GamT0 - Lam0)); 

Del0   =   DelCorrect + deltaErr;    %Alg(2) 

 

GamM0   =   Lam0 + Del0;        %X(5) 

Omg0   =   (vT * sin(Thet0) - vM * sin(Del0)) / Rmt0;%X(3) 

aM     =   0;        %X(6) 

 

vC0    =   -(vT * cos(Thet0) - vM * cos(Del0));    %Alg(4)  

aMc0   =   N * vM * Omg0;      %Alg(1)   

if abs(aMc0 / 9.8) >= AccMaxG, aMc0 = AccMaxG * 9.8 * sign(aMc0); end  

  

X0     =   [Rmt0; Lam0; Omg0; GamT0; GamM0; aM];  

Alg0   =   [aMc0; Del0; Thet0; vC0]; 

tk      =   0; 

bf      =   1;    % before flyby flag 

rr      =   0;    % negative range rate flag 

kk      =   0; 

n       =   length(X0); 

Guidance Cycle 
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%  Simulation Cycle 

% 

Rmt    =   Rmt0; 

hwait   =   waitbar(0,'Please wait...');  

 

while bf  

 

waitbar((Rmt0 - Rmt) / Rmt0, hwait) 

 

kk       =   kk + 1; 

  

tspan(1, kk) =   tk; 

Xspan(:, kk) =   Xk; 

Algspan(:, kk)   =   Algk; 

 

% 

[~, Xspank]  =   ode45(@dX_PPN_NL_1ord, [tk, tk + Ts], Xk, 

OptODE);  

 

Xk     =   Xspank(end, :)';  

 

% X   = [1-Rmt,2-Lam,3-Omg,4-GamT,5-GamM, 6-aM] 

Rmt    =   Xk(1); 

Lam    =   Xk(2); 

Omg    =   Xk(3); 

GamT   =   Xk(4); 

GamM   =   Xk(5); 

aM     =   Xk(6); 

 

% Alg = [1-aMc,2-Del,3-Thet, 4-vC]  

Del    =   GamM - Lam; 

Thet   =   GamT - Lam; 

vC     =   -(vT * cos(Thet) - vM * cos(Del));  

aMc    =   N * vM * Omg;   

if abs(aMc / 9.8) >= AccMaxG, aMc = AccMaxG * 9.8 * sign(aMc); end 

Algk   =   [aMc, Del, Thet, vC]; 

 

% range rate for miss distance 

Rdot   =   (abs(Rmt) - abs(Xspan(1, kk))) / Ts; 

if rr == 0 

if rdot < 0  

rr = 1;  % first time of negative range rate 

end 

else 

if rdot >= 0 

bf  =   0;  % non-negative range rate after period of 

negative range rate 

end 

end 

% 

tk  =   tk + Ts;   

end  %while 

Derivatives Calculation  

%%% 

 function   dx  =  dX_PPN_NL_1ord(~, x) 

%Calculation of State Vector Derivatives   

%  for Nonlinear Relative Motion Model  

%  with First Order Dynamics 

%------------------------------------------------------------- 
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% Model State Vector  

%   X   = [1-Rmt, 2-Lam, 3-Omg, 4-GamT, 5-GamM, 6-aM] 

% Algebraic Variables 

%   Alg = [1-aMc, 2-Del, 3-Thet, 4-vC]  

%------------------------------------------------------------- 

% 

%  X   = [1-Rmt,2-Lam,3-Omg,4-GamT,5-GamM,6-aM] 

 

dx     =   zeros(n, 1); 

 

rho    =   x(1); 

lambda  =   x(2); 

omega   =   x(3); 

gammaT  =   x(4); 

gammaM  =   x(5); 

am     =   x(6); 

%  

 

%  Alg = [1-aMc,2-Del,3-Thet, 4-vC] 

aMc    =   Algk(1); 

Del    =   Algk(2); 

Thet    =   Algk(3); 

vC     =   Algk(4); 

 

 

dx(1)   =   vT * cos(Thet) - vM * cos(Del);   

dx(2)   =   omega; 

 

x1_s   =   max(abs(rho), 1000) * sign(rho); 

dx(3)   =   -2 * (vT * cos(Thet) - vM * cos(Del)) * omega / x1_s ... 

    + aT * cos(Thet) / x1_s - am * cos(Del) / x1_s; 

   

dx(4)   =   aT / vT; 

dx(5)   =   am / vM; 

dx(6)   =   (-am + aMc) / tauM; 

 

end    

Miss Distance Calculation  

tspan   =   tspan(1, 1 : kk); 

t_fin   =   tspan(1, kk); 

Xspan   =   Xspan(:, 1 : kk); 

Algspan =   Algspan(:, 1 : kk); 

 

% miss distance  

miss  =   Xspan(1, end) * sin(Xspan(2, end)); 

fprintf('Mis dist.=%6.5g (m)   t_fin=%6.5g (sec)\n', miss, t_fin) 

 

  



 

 

 

 תקציר

 Proportionalבעבודה זאת אנו לומדים את בעיית היציבות של מערכות הנחייה בשיטת ניווט יחסי )

Navigation, PNיים במטרה לחקור בצורה מלאה את חוג ההנחיה, ( בעזרת מספר כלים אנליטיים ונומר

 מפקודת התאוצה ועד מרחק ההחטאה. 

𝑎𝑐ניווט יחסי היא השיטה הנפוצה ביותר להנחיית טילים. לרוב, חוק ההנחיה מבוטא כך:  = 𝑁 ⋅ 𝑣𝑚 ⋅ 𝜆̇ ,

 𝜆היא מהירות הטיל.  𝑣𝑚 -, ו3-5הוא הגבר, בדרך כלל נלקח בין הערכים  𝑁היא פקודת תאוצה,  𝑎𝑐כאשר 

נקראת זווית קו הראיה, זווית זו נוצרת מהמפגש של הקו הישיר בין הטיל למטרה )קו הראייה( וקו ייחוס 

שרירותי. כיוון שחוק ההנחיה פרופורציונאלי לנגזרת זווית קו הראייה מובן שהחוק מנסה לבטל את קצב 

קו ראייה קבועה. אופן הפעולה כולל מדידת קצב  קו הראייה, כלומר לאפס את הנגזרת ולשמור על זווית

זווית קו הראיה, חישוב פקודת תאוצה על פי חוק ההנחיה וביצוע הפקודה ע"י מערכת בקרה שמסיטה 

 משטחי היגוי בהתאם לפקודה וגורמת לתנועה בכיוון הרצוי. 

ת חוק ההנחיה ואת מערכת ההנחיה מתוארת על ידי מודל לא לינארי שכולל את המשואות הקינמטיות, א

 הדינמיקה של הטיל. המודל הלא לינארי המלא הוא הבסיס לכל ניתוח שיבוצע.

לינאריזציה של מודל מערכת ההנחיה מבוצעת סביב מצב ייחוס אידיאלי שבו הטיל והמטרה נמצאים 

הכוון.  במסלול התנגשות ובנקודת עבודה זו לא נדרשות מצד הטיל המיירט פקודות הנחיה כדי לתקן שגיאות

על בסיס המודל הלינארי המקורב מבוצע ניתוח תיאורטי שלא ניתן לקיים באמצעות המשוואות המדויקות. 

( באופן שהמקדמים של מטריצות המצב LTVהמודל שמתקבל כתוצאה מהלינאריזציה הינו תלוי בזמן )

 𝑡𝑔𝑜 (time-to-go.) –בזמן נכפלים בזמן הספירה לאחור 

למוד את המודל הלינארי היא השיטה שמרחיבה את תיאורית ליאפונוב למערכות תיאוריה שיכולה ל

קיימת נקודה  𝑡𝑔𝑜שתלויות בזמן סופי. כיוון שמקדמי המודל הלינארי תלויים בזמן הספירה לאחור 

, כלומר ברגע החליפה של הטיל והמטרה. לסוג כזה של משוואות תיאורית סינגולרית בסוף התהליך

ינה ישימה והשיטה המוצעת מתמודדת עם הבעיה על ידי חקירת ההתנהגות של מספר הולך וגדל ליאפונוב א

של זמן הטיסה. כתוצאה מכך מתקבלים תנאים מספיקים ליציבות ויציבות אסימפטוטית. על בסיס השיטה 

 פותחה יכולת לתכנון פרמטרי של המרכיבים בחוג ההנחיה.

בתוכה את המשוואה שמתארת את הטווח בין הטיל למטרה  המערכת שכוללת-בהמשך מבוצע ניתוח לתת

( ומכאן חשיבות חלק זה של העבודה, miss distanceבכל רגע. מוצא המערכת מתאר את מרחק ההחטאה )

שמבוצע באופן נומרי. האתגר בחלק זה הוא ההתמודדות עם שני אינטגרטורים שמופיעים במוצא תת 

ושנחקרה בשיטת ליאפונוב מורחבת. החקירה כאן  tgoלאחור  המערכת הקודמת, שתלויה בזמן הספירה

מוצא, שהיא תגובת המערכת למצב התחלתי. התוצאות המתקבלות -תתבצע ביחס ליציבות במובן כניסה

 הינם תנאים מספיקים ליציבות ויציבות אסימפטוטית. 

חיה. פרק שני מוקדש המשך העבודה מסודר כך: בפרק ראשון רקע מתמטי ופיזיקלי הנדרש למערכת ההנ

ובפרק רביעי  𝑡𝑔𝑜המערכת שמרכיביה תלויים בזמן -ללינאריזציה של המערכת. בפרק שלישי ניתוח תת

למערכת הנחיה סימולציה  1בנספח  סיכום ומסקנות. –חקירה של התנהגות מרחק ההחטאה. פרק חמישי 

  בשיטת ניווט יחסי. 
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