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Abstract

In this work, we study the stability of a proportional navigation guidance system by using a set
of analytical and numerical tools in order to provide a complete investigation of the guidance

loop, from acceleration command to miss distance.

The guidance loop includes kinematics equations, guidance law and missile dynamics. The
mathematical model that represents the system is nonlinear. This precise nonlinear model is

the basis for any later analysis.

Linearization of the proportional navigation guidance system is done around a reference
nominal process which is an ideal trajectory. With the linearized model a more in-depth
research can be achieved, via application of theoretical analyses. The derived linearized model
is time dependent such that the coefficients of the state matrices are factors of the remaining

flight-time t,, (time-to-go).

Stability analysis of terminal-systems is an extension to the Lyapunov theory, applied in the
guidance system to cope with time-varying components in the state-space model. The
dependence of the model on t;, means that a singular point is present in the differential
equation at the vicinity of the impact point (ty, — 0). Then the stability of the terminal-
systems, i.e. the subsystem that is governed by the differential equations of the line of sight
angle rate w(t) and the missile dynamics, is investigated in terms of unbounded increase of the

flight time (¢, — oo). The results are sufficient conditions for stability and asymptotic stability.

To the extent that conditions regarding stability of the closed-loop subsystem exist, transition
to the next step is admitted. The following investigation examines the stability of the subsystem

that includes the missile-target range p(t), whose final value forms the miss distance.

In regards to the purpose of the guidance system, the miss distance analysis is of paramount
importance. Since two integrators are present at the output of the closed-loop subsystem, for
which conditions for stability were provided earlier, then the stability of the subsystem that
includes p(t) requires study of its own. In contrary to the analysis of the closed-loop system,
where stability is examined with respect to a prior state, the analysis of the miss distance is
with respect to stability in the sense of input-output behavior, which is the response to an initial
state. Numerical analysis examines the operation of the guidance system in this regard. Once

again, the results provide sufficient conditions for stability and asymptotic stability.



An extra product was yielded through the Lyapunov analysis which can be used as a general
tool for the design of the guidance system. The solution of Lyapunov function yields parametric
inequality, which, by comparing it to the numeric objectives of the system, may indicate
appropriate values for realization.

The paper is organized as follows: Chapter 1 covers the physical and mathematical background
material required for study of the guidance loop. Chapter 2 is devoted to the system
linearization. Chapters 3 and 4 present the closed-loop analysis (Lyapunov extension) and miss
distance analysis of the guidance system respectively. In Appendix 1 is the program code of

proportional navigation simulation.



1. Introduction to Proportional
Navigation

This chapter provides a background for some of the main topics in the missiles guidance field.
The guidance law of interest in this research paper is proportional navigation. Therefore, by
the nature of things, the proportional navigation law also stands in the focus of this chapter.
The kinematics of missile-target pursuit and elementary notions of this discipline are presented.
Then we turn to study the proportional navigation law, the guidance circle and representations

of missile dynamics.

1.1. Background

Three stages form the missile flight — launch, midcourse and terminal. In the first stage the
missile accelerates until burnout and positions itself in a stable flight toward the target. In the
second stage, the missile flies most of the distance to the target. It is common in this stage to
attempt to increase hit performances by trajectory shaping. The final stage is known as the

terminal stage.

In the last stage, accurate navigation should bring the missile close enough to the target to
guarantee lethality. The navigation here is based on the relative motion of the missile and the
target. The guidance system receives measures from a seeker and generates commands to be
performed by the control system. The control system activates control surfaces motored by

servos, to achieve the desired acceleration.

The resultant acceleration is in the lateral plane of the missile body (see Figure 1.1). Hence,
the guidance system deals only with displacement and deviations in the two lateral axes of the

missile.

The missile configuration in which a cylindrical body carries two sets of control surfaces,
whether in symmetric form (90° separation between wings) or not (one set slightly rotated), is
called skid-to-turn (STT).

Maneuvering in the perpendicular lateral axes, in skid-to-turn configuration is decoupled by

means of roll stabilization and is managed in each channel independently.
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Figure 1.1: Guidance of a missile around the lateral axes in the Terminal stage.

Depending on the engaged method, the guidance law may be given in terms of required
acceleration or velocity direction, finally the demand is translated into lateral force and wings

deflection.

The Pure Pursuit method provides a guidance law that generates demands on velocity direction.
In advance, a missile employing Pure Pursuit rotates its velocity direction to coincide along

with the line of sight to the target.

For an optimal law, such as Proportional Navigation, the command is given with respect to the
line of sight rate, as elaborated in the next sections.

1.2. Geometry and Kinematics

In this section properties and formulas related to the two-dimensional kinematics of missile

guidance are presented [1] [2]. First, let the following assumptions:

a.1l. The motion is two-dimensional. A common missile configuration is of two perpendicular

channels, where the guidance of each channel is managed independently.

a.2. The Missile flight is in the post-boost phase. Energy is no longer consumed and
momentum conservation is satisfied. Thus in the longitudinal axis the missile speed is

remaining constant. The target speed is also assumed to be constant.



a.3. In the lateral plane acceleration (maneuver) is developed from guidance commands.

Accelerations due to drag and gravity are ignored both in the longitudinal and lateral

directions.

a.4. Missile dynamics is ideal, specifically:
Am = A, (1.1)
Where a, is the lateral acceleration command as delivered by the control system and a,, is the actual

yielded lateral acceleration of the missile.

a.5. By referring always to the center of mass, the motion of the bodies is described via

kinematics of points.

(Except assumption a.4, all the assumptions are valid also for the rest of the paper).

Figure 1.2: Kinematics of planar motion in a moment after first line of sight evaluation.

In the pursuit problem, the target and the missile position vectors are denoted by r and r,
respectively. vt and v, are the target and the missile velocity vectors with constant magnitudes

v and v, and with directions determined by the path angles y; and y,,, respectively.

The line that connects r and r,, is the Line of Sight (LOS) and its vector representation is r:
r=7Tr— 1y (1.2)

Where r is the line of sight vector, r; and r,, are the target position vector and the missile position

vector respectively.



The length of r is the range p and its angle is the LOS angle A. 4 is measured with respect to
an inertial reference axis, usually fixed to the direction of the first line of sight measure (see
Figure 1.2).

Elementary mechanics provides us with two velocities of planar motion — radial velocity:

p=vr-cos —v, cosd (1.3

That is the relative velocity along the line of sight — and the normal velocity:

p-A=vp-sind —v, -sind (1.4)

That is the relative velocity perpendicular to the line of sight.

Where p and A are the first time-derivative of the LOS range and the LOS angle respectively. v, and
v, are the constant magnitudes of the target and the missile velocities. 6 is the target aspect angle that
formed by the target velocity and the LOS and § is the missile lead angle that formed by the missile
velocity and the LOS.

For the Cartesian frame of coordinates taken as fixed and inertial, the components of the line
of sight vector r are the projections of p through A:

Ty =p COSA

rn,=p-sind (1.5)

Where 7, is the component of the line of sight vector r on the x axis, r,, is the component of the line of

sight vector r on the y axis, p is the magnitude of r and A is its angle with x axis.

The acceleration normal to the path in non-uniform motion, yields the terms for the target and
the missile path angles:

?’T = ar/vr (1.6)
Ym = Qm/Vm

Where y; is the target path angle, y,, is the missile flight path angle, a; target acceleration
perpendicular to the target velocity, a,, missile acceleration perpendicular to the missile velocity, v

and vy, are the constant magnitudes of the target and the missile velocities.

The angles 8 and ¢ that appear in (1.3) and (1.4) are known as the aspect angle and the lead
angle. 8 formed by the target velocity and the line of sight and & by the missile velocity and
the line of sight (Figure 1.2):
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Where 0 is the target aspect angle and 6 missile lead angle, y+ and y,,, are target and missile path angles

respectively, 4 LOS angle.

For the missile to be on a collision course with the target (see section 2.1 in chapter 2), the law

of sines determines that the lead angle has to satisfy:
5§ =sin?t (ﬁ - sin 9) (1.8)
Um

Where § missile lead angle, 6 target aspect angle, vy and v, are the target and the missile constant

velocities.

In practice the lead angle is different due to instruments limitations and biases. In this case the
lead angle is separated into two components, one is said to be the correct lead angle and the

second the heading error:
. _1(Vr .
§ =sin™?! (— - sin 9) + 8opr (1.9)
vm

Where § missile lead angle, 6 target aspect angle, vy and v, are the target and the missile constant

velocities, &, is the heading error.

The guidance effectiveness of a pursuit is usually evaluated with respect to the initial heading

error &y

Let the LOS angle rate A = w and substitute (1.7) for @ and & in (1.4):
p-w=vp sin(yr —A) — vy, - sin(yy, — A1) (1.10)

Where p is the LOS range and w the LOS angle rate, A LOS angle, v and v, are the target and the

missile constant velocities, y; is the target path angle, y,, is the missile flight path angle.

Differentiation of both sides with respect to time yields:

p-w+p w=vp yr cos(yr—21) = VY €0S(Ym — 1)
+ A1y cos(Y —A) —A-vp-cos(yr — ) (1.11)

—wp




Where p is the LOS range and w the LOS angle rate, A LOS angle, vy and v, are the target and the

missile constant velocities, y is the target path angle, y,, is the missile flight path angle.

The two last terms in (1.11) sum to —w - p, the expressions vy - yr and v,, - ¥, are equal a,

and a,, as in (1.6), hence the first time-derivative of the LOS angle rate gets the last form:
W= ;[—Z-w - (vp-cos@ —v,, - cos8) +ar - cosO — a,, - cos b (1.12)

Where w is the missile-target angular velocity (LOS rate), p is the LOS range, ar and a,,, are the target

and the missile accelerations, 6 is the target aspect angle, § missile lead angle.

Having developed the self-contained equations of motion for the missile-target pursuit, the total

system is now given by the following set of differential equations:

p=vr-cos0—uv, cosd

l=w

w=-2 w: (vpr-cos@—v, -cosd)/p+ar-cosb /p (1.13)
—a,,-cosd/p '

Yr =ar/vr

Ym = Qm/Vm

Where p is the line of sight range, A is the line of sight angle, w is the line of sight angle rate, v target
constant velocity magnitude, v,,, missile constant velocity magnitude, y; target path angle, y,, missile
flight path angle, 6 is the target aspect angle and & missile lead angle, a; and a,, are the accelerations

of the target and the missile respectively.

Notes on (1.13):

n.1. Equations (1.13) form a complete mathematical model of the relative motion of missile

and target in two dimensions subject to restrains a.1 — a.5.

n.2. Evaluation of (1.13) have to be preceded by the calculation of 6 and § by the algebraic
equations (1.7).

n.3. Expressions for initial conditions embedded in previous equations. p, and A, are given
by the initial magnitude of the LOS vector r and its angle with x axis. w, is calculated
by (1.4). Initial condition for y; = 6, + 1, entails knowledge of the target velocity
vector. For the missile path angle, y,,, = 8y + 4o, (1.8) has to be calculated.



1.3. Proportional Navigation

So far the equations of motion and the geometry with respect to the missile guidance were
described, but not much was said about the law by which the missile may hit the target. This is
the place where the Proportional Navigation (PN) is introduced and provides a guidance law
to lead the missile towards collision with the target [3].

Proportional navigation seeks to preserve a constant line of sight angle and thus to place the
missile in a collision course with the target. By providing the control system a reference signal
proportional to the line of sight rate, the guidance system rotates the missile velocity vector
with the line of sight. Thus an acceleration command form of the PN law is [2]:

a.=N- vy, w (1.14)

Where a, is a lateral acceleration command needed to perform by the control system, N constant

navigation gain, v,,, missile velocity and w the line of sight angle rate.

With respect to the pursuit model (1.13), if the missile dynamics is assumed ideal (1.1) then a,
is replacing a,, directly. If nonideal dynamics is considered, then a. is standing for the missile
acceleration a,, , through the model that represents the missile dynamics. In any case, since the
acceleration command (1.14) is algebraic with respect to w, its calculation has to come before

the calculation of the differential equations (1.13) (see also note n.2).

The type of law presented in (1.14), and will be used further on in this work, is called Pure
Proportional Navigation (PPN) and in it commands are applied perpendicular to the missile
velocity (see Figure 1.2). Another common approach is the True Proportional Navigation

(TPN) in which commands are given with respect to the line of sight.

Experiments show that values for the navigation gain N (1.14) are preferred when taken
between 3 and 5, and in any way, no lower than 2. The higher the gain is, the flight path is
more gentle and slightly closer to the region bounded around the initial conditions. However a

higher gain means also large maneuvering capabilities [3].

Proportional navigation with N = 3 demonstrated to be the optimal solution for the pursuit
problem regarding non-maneuvering targets, when the cost function is minimum miss distance
[4]. The development of guidance laws with respect to optimal control, is currently the subject

of a large study with the purpose of providing solutions for modern problems.



Among other problems, there are the interceptions inside and outside the atmosphere. A work
that studies exo-atmospheric pursuit achieves solutions [5] by associating a terminal cost
function with the constrained kinematics. The cost function is defined in the sense of miss
distance for a prescribed final time ¢, (see section 2.1). Solution to the optimal problem yields
guidance strategy in terms of zero effort miss (ZEM), namely the miss that would be obtained

by stopping to produce commands from the current to the final time.

A study of endo-atmospheric interception for a missile having nonlinear dynamics and
Gaussian measurement noise [6], proposes an integrated estimation-guidance approach on the
basis of numerically solving the Hamilton-Jacobi equation associated with the stochastic

optimization problem.

Another paper [7] studies the advantage of optimal guidance laws with respect to traditional
ones given mismatches between the actual dynamics of the interceptor and the model in design.
The results are given in terms of stability, in the time domain (Lyapunov), and the frequency

domain (circle criterion).

The following sections deal with issues concerning missile guidance as a system.

1.4. The Guidance Loop

The complete missile is composed of several subsystems. Each subsystem is characterized by
unique dynamics such as damping-ratio or time-constant. Analyses of missile guidance have
to consider these properties in order to correctly model the system. Only then can the right
approach to analyze the system be determined. Accordingly, the guidance loop is presented

here in its full scale, namely a nonlinear model with nonideal dynamics.

Trackin Guidance Control

;""" Seeker ™ Filter ’ > Law > System | _ :
: A A ac am
! :
! 1
! 1
! 1
! 1
! 1
! 1
! 1
1

---------------------- Kinematics[¢-----=-=-=-=-=-==-===== = - -1

Figure 1.3: Proportional navigation guidance loop.
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Target detection by the homing head — seeker — initiates the guidance loop. According to (1.14)
proportional navigation requires information about the line of sight angular rate to produce
guidance commands. To generate this datum, readings of the seeker are delivered to the
tracking filter to estimate the line of sight angle and its derivative. The guidance law develops
lateral acceleration commands. The flight control system activates control surfaces to force the
missile to track the commands. Each cycle results in missile motion. The achieved motion alters
the relative position between the missile and the target. This loop-action continues up until
final conditions [1] are met.

The guidance system in Figure 1.3 can also be presented in a state-manner:

A\ 4

T(t)

Ca

v
=2
<

3
v
Sx
QU
—
2

Figure 1.4: Concrete description of a guidance loop composed of guidance law block (left dashed box) and
missile dynamics block (right).

It is convenient to distinguish between the two blocks of the guidance loop: one block includes

the guidance components, and the other one represents the missile dynamics.

1.4.1. Guidance Law Block

The guidance law block includes the relation of the accelerations to the line of sight, as it is
reflected in the equations of motion, and therefore it is inherently nonlinear time-dependent
(expressed in Figure 1.4 with the operator T (t)).

Recall the kinematic formulation that connects a missile motion with the line of sight angle
rate (1.11):

p-w+2-p-w=ar-cosl—ay- cosd (1.11)

Where p is the line of sight range, w is the line of sight angle rate, 6 is target aspect angle and & missile

lead angle, ar and a,, are the lateral accelerations of the target and the missile respectively.

9



Since the variables p, w, 6 and § change quickly with time, they form a relation between the
input and the output of the guidance block, that depends on time. Then T(t) in Figure 1.4, is
an operator that connects the missile acceleration and the LOS rate. The expression for T(t)

may be found in the rearrangement of (1.11).

Important to notice that since a missile objective is to close the range as fast as possible, the
variables that take place at the guidance law block change quickly in a short and finite time,
and indeed the guidance system as a whole is characterized by a dependence on regression of

finite time, as will be discussed later.

As mentioned, the guidance block stands on the kinematical relation as reflected by the
equations of motion. Therefore as a model this block is dominated by the five variables of

equations (1.13). For convenience, let us write this set of equations here again:

p=vr-cos0 —uv, -cosd

l=w

w=—-2w: - (vr-cos0 —v,-cosb)/p+ar-cosb /p (1.13)
—Qy - coso /p '

Yr =ar/vr

Ym = Qm/Vm

Where p the line of sight range, A is the line of sight angle, w is the line of sight angle rate, v, target
constant velocity magnitude, v,,, missile constant velocity magnitude, y; target path angle, y,, missile
flight path angle, 6 is target aspect angle and § missile lead angle, a; and a,,, are the accelerations of

the target and the missile respectively.

Then the guidance block is composed of five variables[p 4 @ Y7 Vm].

1.4.2. Missile Dynamics Block

Missile dynamics includes autopilot, seeker and tracking filters, all these subsystems’
coefficients are mostly constant, and therefore may be represented by a linear time-invariant
(LTT) model.

Although each of the subsystems, namely autopilot, seeker and tracking filters, justifies a
transfer function of some order for its own, it is common to study the effects of the dynamics
by considering an overall, one linear transfer function. It transfers the desired acceleration a,

as produced by the guidance unit, to actual missile acceleration a,,, as performed after the

10



course that was done from the line of sight measure and until the fins deflection and the

consequent lift force, that changes the missile lateral acceleration.
The general form of transfer function for dynamics of n" order is given by [8]:

R T .
_ b,_1-s +4+by-s+1 4 (1.15)

A = :
™ oan-sttag st 4 daos+1 ¢

Where a,, is the missile actual achieved lateral acceleration, a, lateral acceleration command as given
by the navigation law, s Laplace transform variable, a; coefficients of the characteristic polynomial of
the transfer function and b; coefficients of the numerator, n is the number of the highest exponent of

the characteristic polynomial.

The missile dynamics represented in (1.15) by a transfer function, may also be represented by
the following state space form (Figure 1.4):

xd:Ad‘xd‘de'aC

Am = Cq * Xg (1.16)

Where A; € R™", b; € R™1, ¢, € RY*™ are state matrix and vectors composed of the coefficients
a; and b; of the transfer function (1.15), x; € R™** state vector of the dynamic variables, a, and a,,
are input and output lateral acceleration respectively. The equation is subject to the initial conditions

Xd =Xd0 att = to.

The variables that dominate this block of the system are dependent on the model that represents
the dynamics of the missile. It may begin with a first order model where only one variable, that
is the missile lateral acceleration, is considered, and go to a high arbitrary order of the missile
dynamic states [9]. The number of variables that represent the dynamics block is denoted by

n.

In order to maintain the gain of the guidance law (see section 1.3) the different components of
the missile dynamics have to be matched in such a way that the overall gain from input to

output will be:

a
a_m =cq (s 1=A)7" " bgls=o =1 (1.17)
Cc

Where a,. missile lateral acceleration input command and a,,, missile lateral output acceleration. A, €
R™" by € R™1, ¢, € R™™ are state matrix and vectors of the missile dynamics, s Laplace variable

and I is unit matrix of order n.

11



When an ideal dynamics assumption is made, the connection between the input acceleration
command and the output actual acceleration is direct, that is to say A;, b, and c, reset and a

second route connects a,, to a, through a variable d , which equals 1. As stated in (1.1):
am = Ac (1.1)
Where a, missile lateral acceleration command and a,,, missile actual achieved lateral acceleration.

1.4.3. State Space Model

To describe the model of the guidance system in more detail, let the state variables be:

X1 =p

X, =A

X3 = (1.18)
X4 =Vr

X5 = Ym

Where [x4, ..., x5] = [p, A, w, Y7, Vim] are state variables of the system, p line of sight range, A line of

sight angle, w LOS angle rate, y+ and y,, path angles of target and missile respectively.

The variables (1.18) with the missile dynamics vector form the state vector x of the guidance

system:
x=[*x1 X2 x3 x4 x5 xg]T (1.19)

Where x € RG+M*1 s the guidance system state vector, [xy, ..., xs] = [p, 4, w, Y7, ¥m] are the state
variables of motion as detailed in (1.18), x; € R™*1 is the state vector of the missile dynamics (1.16),

superscript T refers to the transpose operator.

The number of states 5 + n in the vector (1.19) originates in the five variables of motion of the

guidance block, plus n variables of the missile dynamics (see previous sections).

Putting together (1.13) and (1.16), the complete model of the guidance system with state vector

x (1.19) receives its final form:

X, =V c0SO — v, -cosS

Xz = X3

%3 = —=2-%3 (vr - COSO — Uy - COS &) /%, + ar - cos 6 [x; (1.20)
—Cq*Xq 0SSO [xq
Xy = ar/vr

Xs = Cq * Xgq/Vm

12
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Where x € R(5)x1 is the guidance system state vector,
[x1,...,x5] = [p, A, 0, Y1, ¥m] are the state variables of motion, x; € R™*?! is the state vector of the
missile dynamics with state matrix A; € R™™ and vectors b; € R™1, ¢; € RY", vy and v,, target
and missile constant velocities, 8 and & target aspect angle and missile lead angle, ar is the target

acceleration and a,. missile acceleration command.

Recall also that the calculation of the right hand side of (1.20) must be preceded by the
evaluation of 6, § and a, by (1.7) and (1.14):
9 - yT - A

§=Ym—A4 (1.21)
a.=N-v, w

Where 6 is the target aspect angle and § missile lead angle, yr and y,,, are target and missile path angles
respectively, A LOS angle, a. is an acceleration command needed to perform by the control system,

N constant navigation gain, v, missile velocity and w the line of sight angle rate.
The variables 6, § and a, of the algebraic equations (1.21) form the vector x,:
x, =10 6 a.]’ (1.22)

Where x, € R3*1 is the vector of the dependent variables of algebraic equations (1.21), 6 is the target
aspect angle and & missile lead angle, a. missile acceleration command, superscript T indicates the

transpose operator.

Initial conditions to the motion variables in (1.20) are collected from the equivalent
formulations, as described at note n.3 of section 1.2. Let's add the initial conditions of the
dynamics, x4,, and the result is the set of initial conditions required for the calculation of the

state equations (1.20):

— ’ 2 2
pO_ er+ry0

2o = sin™(1y,/p)
wo = (v - sin By — vy, - sindy)/pPo (1.23)
Y1, = 0o + 4o

ymo = Sin_l(Sin(HO) ' vT/vm) + 5err + AO
Xq, = given
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Where subscript 0 stands for initial time ¢y, p is the line of sight range, r,. and r;, are the components of
the relative position r in £ and § directions respectively, A is the line of sight angle, w line of sight
angle rate, v and v, target and missile velocities, y; and y,,, target and missile path angles, 8 target
aspect angle and 6 missile lead angle, &, initial heading error — the deviation of the missile lead angle

from the correct direction (see 1.8), x, state vector of missile dynamics of nt" order.

Finally let f be a functions-vector that represents the right hand side of the ordinary nonlinear

differential equations (1.20):

x=f(xa.ar) (1.24)

Where x, x € R5+MX1 are the guidance system state vector and its derivative, f € RS+*1 is a vector
of functions detailed in (1.20), a; is the target acceleration and a, missile acceleration command.
In the same manner f,(x,) represents the right hand side of the algebraic equations (1.22).

Equations (1.20) are highly nonlinear. Due to the analyzation difficulty of (1.20), a design
objective is to linearize the equations. In the next section, (1.20) will be expanded into a Taylor
series about a nominal trajectory at the final stage of a missile’s course, where proportional

navigation is engaged.

1.5. Nonlinear System — Examples

For verification and demonstration of the results here and in later examples, we are going to
use three sets of missile dynamics and parameters. In all of them the nonlinear 2D kinematic
model is engaged. The three types of dynamics are the ideal, first order and second order

dynamics. The value of the following parameters is fixed unless mentioned explicitly:

Uy, =400 m/s, vy =200m/s,ar =0, N = 3.

Ideal Dynamics

Algebraic equations:
9 =Yr — A
§=Ym—4 (1.25)
a.=400-N-w

Differential equations:

14



X, =200 -cos6 —400-cosd

X2 = X3

%3 =[—2-x3-(200 - cos 8 — 400 - cos §) — a. - cos 8]/x, (1.26)
5C4 =

%s = a,/400

Initial conditions for the differential equations:

X1, = X1

X2y =0

x3, = (200 - sin 6, — 400 - sin §,) /xr (1.27)
X4, = 0

Xs, = 8

Initial condition values are provided on the basis of the following evaluations:

— 2 — 2 ‘ =
Po = [T, T 1y, = (xTO _xmo) + (yro _ymo) = X1y

Ao = sin~1(r, /p) =0
wo = (vr - sin By — vy, - sindy)/po = (200 - sin 6y — 400 - sin 8y) /xr,, (1.28)
Y1, = 6o + 4o = 6

(1 .
Ymg = SiN~L( Vg /U SiNBg) + Sepr + Ao = siN 1 (E - sin 00> + Ocpr

Ao = sin~*(r,,/p) = 0is aresult of the selection of a frame with x axis aligned with the initial
LOS (see Figure 1.2, Figure 1.5).

15t Order Dynamics

Based on the first order transfer function:

1

Qp=——-a
moTn,es+1 C

(1.29)

Where a,, is the missile actual acceleration at the lateral plane, a. PN command, s Laplace transform

variable and t,,, time-constant of the missile dynamics.

The following equations are valid, algebraic equations:

QZVT_A
§=yYm—4 (1.30)
a.=400-N-w

Differential equations:

15



X, =200 -cos6 —400-cosd

562 = x3
%3 = [=2-x3- (200 - cos 6 — 400 - cos §) — x - cos §]/x; (1.31)
X, =0 '
Xs = x¢/400
J.C6 = _xs/Tm + ac/Tm
Differential equations initial conditions (see calculations in 1.27):
Xy = Xr
Xz, =0
x3. = (200 -sin8, — 400 - sindy)/x
3 _( 0 0)/xr (1.32)
X4y = 8o
x50 = 50
x60 = amo
2" Order Dynamics
Based on the second order transfer function:
2
a ©n (1.33)

= -a
242wy -s+wt ¢

Where a,, is the missile actual acceleration at the lateral plane, a, PN command, s Laplace transform

variable. ¢ is the damping ratio and w,, is the natural frequency of the missile dynamics.

Algebraic equations:

9=VT_A

§=Ym—4 (1.34)
a.=400-N-w

Differential equations:

x; =200-cosf8 —400-cosé

X2 = X3

%3 = [—2 x5 (200 - cos § — 400 - cos §) — x¢ - cos §]/x;

Xy =0 (1.35)
g = x4/400

X = X7

X7 =~ Xg— 2wy X+ wf - ac

Differential equations initial conditions (see calculations in 1.27):

X1, = XT

0

1
v =0 (1.36)
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x3, = (200 - sin 6y — 400 - sin &) /x7
X4, = 09

X5, = 8o

X6, = O,

X7 = Xd,

Example 1 — Initial Heading Error

The examples in this section examine the guidance system response for two types of challenges
in initial conditions: heading error and target range. The ideal system and first order system

with the governing equations (1.25)-(1.32) are used.

Let the missile, located at the origin, employ proportional navigation. The target is not

maneuvering, that is a; = 0. Additional details appear in Figure 1.5.

Missile

vy = 200m/s

6o

(xTo' 0)

Target

Figure 1.5: Initial conditions and parameters for the examples in 1.5.

Figure 1.6 is the acceleration command versus initial heading errors &, and 2 - ¢y, The
results imply that for the higher heading error (gray scales in the figures) the required
acceleration to close the error in the velocity direction, is two times higher than the equivalent

lower heading error.

The figure presents also results for nonideal dynamics, which is simulated by a first order
transfer function, in this case the achieved acceleration (a,,) is not ideally as the acceleration
command (a.). For the two cases of initial heading error, it is possible to see the actual missile

acceleration marked by a dashed line.
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Missile Acceleration
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Figure 1.6: Acceleration histories of guidance system for two values of initial heading error &, , for ideal
system and for first order dynamics.

Figure 1.7 is the trajectory extracted from the relative position vector r. In terms of time series,
the line begins at the right lower corner where the distance between the missile and the target

is the largest. Then the distance advances and decreases until the closing velocity v, changes

its sign. At that time, the last range between the missile and the target is inscribed and the miss-

distance result declared.

Relative Motion Trajectory
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Figure 1.7: Relative motion trajectories for two values of initial heading error §,,., , for ideal system and for

first order dynamics.

The effect of the initial heading error takes form in the convex curve of the trajectory plots of

the bigger heading error.
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Example 2 — Long Target Range

Figure 1.8 compares the acceleration commands of a system with an initial range p, and a
system with a two times bigger initial range, 2 - p,.

Missile Acceleration

7 F
— 2 ideal, p
\ s,
a: 1st ord, Py
5 R a: st ord,p0
.
:\\\ a: ideal, 2p,
1 )
; X a : 1stord, 2,
4\ : "
- I', \\|“ a: 1st ord, 2-p0
~ \
g 3\
< | \
'] .
2 XX

0 5 10 15 20
Time (sec)

Figure 1.8: Acceleration histories of a guidance system for two values of initial range p,, for ideal system and
for first order dynamics.

The initial heading error &, for the two cases is the same. It is obvious that the flight length
t; will be about two times longer for the longer range, hence the time base for the cases is
different. But it is possible to see that when the guidance system has a longer time to close the
error in the velocity vector, it allows lower energy consumption in the sense of acceleration

command. This is explained by the fact that the command is proportional to the LOS rate. Since
the change in LOS is slower for a remote target, the command is lower as well.
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Relative Motion Trajectory
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Figure 1.9: Relative motion trajectories for two values of initial range p,, for ideal system and for first order
dynamics.

The trajectories in Figure 1.9 are straightforward. The bigger range ends in high values of
trajectories for both x and y axis. The high value of y is the result of a low command that

enables a longer time to correct the velocity vector error.

1.6. Summary

Chapter 1 covered basic topics of the guidance as a preface for the study of the system under
test. Laws of motion of the two-dimensional proportional navigation are introduced. Together
with state space model of the missile dynamics, they were applied to conclude the nonlinear
model of the guidance system. The equations of the model serve for system simulation as was

presented with several examples in the last section.

20



2. System Linearization

The exact nonlinear model of the guidance system that was developed in the previous chapter
is the basis for any proportional navigation study. First, as a mathematical model for numerical
simulation, second, as simplification and approximation for an analytical study. A kind of
approximation is the system linearization to be performed in the following chapter. Analyses

in later chapters will use the linearized model.

2.1. Near Collision Course

State space representation of the exact nonlinear model of the guidance system developed in
the previous chapter and concluded in differential equations (1.20), algebraic equations (1.21)
and initial conditions (1.23). The complex form of the equations makes the closed-form
solution impossible, and analysis in terms of stability or intercept-operations also are very
difficult. In advance, in most of the researches the problem is simplified by assuming some
assumptions or limiting the conditions over a specific domain. An additional crucial step is to
linearize the system. In general, linearization is made about an equilibrium point, but as the
solution of system (1.20) may involve time-varying elements, linearization here has to be

performed with respect to a solution which is a nominal trajectory [10].

Consider collision course conditions:

c.l. Target velocity is constant in magnitude and direction. A realization of this condition is
setting the target acceleration a; to zero.

c.2. Missile velocity direction is ideally towards impact point with the target. In other words,

lead angle & (1.8) has no heading error component (&, = 0).
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Missile

Predicted
Impact Point

Target

Figure 2.1: Kinematics of motion in a collision triangle: the missile lead angle 6 oriented precisely to impact
point.
Special attention is granted to conditions c.1 and c.2 because they imply a phase of flight in
which no effort is required by the missile to meet the target. They are also important because
the trajectories of the bodies are ultimately linear. The two trajectories form a geometric

triangle whose third side is the instantaneous line-of-sight range (Figure 2.1).

A scenario that is not absolutely ideal as c.1 and c.2 but has properties that are close to those
that characterize c.1 and c.2, can be found in the terminal stage of the interception. In the
terminal stage the missile and the target flights are characterized by Near Collision Course
(NCC) conditions. Namely, the conditions are not precisely of a collision course, but they are
close to them. In many cases of terminal stage collision course conditions are assumed in order
to simplify the analysis. Therefore, a formulation of the motion described by c.1 and c.2 is

important.

As the target and the missile velocities are constant, the relative velocity along the line of sight

is also constant. Let constant relative velocity along the line of sight be the closing velocity v,:
Ve =—p (2.1)
Where v, is the constant closing velocity, p the length of the position vector r (LOS range).

Since the range between the missile and the target is supposed to be a decreasing function of

time, v, positive represents the constant rate in which the missile approaches the target.
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To formulate collision-course conditions, let us substitute the ideal lead angle (1.8) to (1.4):

. v
pA=vp-sinh — v, -sin (sin‘1 (—T - sin@))
Vm (2.2)

. vr .
=vr-sinf —v, -—-sinf =0
m

Where A is the line of sight angle and p the line of sight range, v; and v, are the target and the missile
constant velocities, yr and y,,, their path angles, respectively. 8 is target aspect angle and § missile lead

angle.

We get p - 1 = 0, which implies that either p = 0 or 1 = 0. p = 0 is trivial, we seek solutions
during pursuit time. Hence the LOS rate 1 is zero. As a result the LOS angle A is constant and
the guidance command is zero a, = N - v, - 0 = 0. Second result is that the missile velocity
direction is set constant (y,, constant) and & the lead angle and 6 the aspect angle are also

constant.

Now, uniform velocity of the target and the missile implies that the relative velocity along the

line of sight is also constant:

p=vr - cos(yr = 2) = U - cOS(m = 1) = ~, (2:3)

const. const.

Where p is the relative velocity along the line of sight, vy and v,, are the target and the missile constant
velocities, 4 is the line of sight angle, yr and y,, are the target and the missile path angles respective,

v, is the constant closing velocity.

Moreover, the time to collision may be calculated by the division of the range over the closing
velocity. The prediction of the time-to-collision by a range measurement only is a significant
simplification in the guidance design. Thus in some moment t, when collision-course
conditions are satisfied, the range to the target is p,, and the time interval remaining for the

missile to fly until collision with the target is:
tr = Po/ V¢ (2.4)

Where t¢ is the flight time from the measure of the range until collision, p, is the line of sight range at

fixed moment t, v, is the closing velocity.

Since the motion is linear, theoretically a single measure of p is enough to provide predictions

for all the future times, because in later moments the time to collision may be found by
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subtracting from ¢, the time that elapsed since the measure of p. This yields the variable ¢,

time-to-go, that is used as an index for time-until-collision:

tgo =t — ¢ (2.5)

Where ¢, is time-to-go, the current remained time until collision, t; is the flight time from the measure

of the range until collision and t is the time that elapsed since then. See Figure 2.2 for illustration.

Sometimes the term ¢, is used even when linear motion is not the case. But it means the same
and it is only an approximation to the remaining time-to-collision, based on the current range

to target and closing velocity.

o ¢S
y
>

Figure 2.2: Timing illustration for time-to-go calculation. Labels below the line indicate a regular forward
progressing timeline. Labels above indicate reverse order timeline starting at t¢.

2.2. Reference Trajectory

A state of operation around which the linearization should be performed can now be allocated.

During the linearization we assume ideal dynamics, since the dynamics model (1.16) is in

anyway LTI, it has no effect on the results.

Let x,, be the state vector of the nominal trajectory that solves (1.20) and characterized by

collision course conditions, then the variables of x,, are:
Pn = V¢ tgo

Y1, = On + An
Ym, = On + An

The nominal value of the variables x, = [0, &, ac] isalso derived from the ideal straight

line motion:
0, = 6
8, = sin" (v /vy, - sin8,) = &, (8err = 0) 2.7)
a.=0
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Where subscript n stands for nominal, subscript 0 refers to initial value at time t,, x,, is the state vector
of the nominal trajectory, x,  is the vector of algebraic variables at the nominal trajectory, 4 line of
sight angle, w line of sight angle rate, p line of sight range, v, closing velocity, ¢, time-to-go, yr and
v target and missile path angles, 6 target aspect angle, § missile lead angle, 8., initial heading error,

vy and v, target and missile velocities, a. missile acceleration command.

On (2.6) and (2.7), target acceleration should also be appended, that from condition c.1lis a; =
0. Notice that equations (1.20) and (1.21) do not include the input variable a,,, rather they have
the input command a., that because during the linearization ideal dynamics assumption is

valid, then x; vanishes and c, - x4 returns to be a,,, again (see (1.16)).

The angles in (2.6) and (2.7) are in fact constants, determined by their initial values. However,
&, in the general case includes an error component, but for nominal motion the error &, is

Z€ero.

Recall that t, in (2.6) is a moment in which the missile motion satisfies near collision course

conditions and was fixed as a reference for t,,, namely was tagged as t;.
Now, a differentiation of (2.6) yields:
X, =[-v. 0 0 0 0] (2.8)

Where subscript n stands for nominal, superscript T is the transpose operator, x,, hominal trajectory

state vector, v, closing velocity.

The nominal state (2.6) is confirmed as a solution by comparing the outcome (2.8) with the
substitution of x,, and x,, from (2.6) and (2.7) to the RHS of (1.20).

2.3. Function Expansion

Let dx be a state vector of a deviation from the nominal trajectory x,,. The trajectory formed

by a deviation upon the nominal trajectory is a general solution of (1.20):
X =x, + 6x (2.9)

Where x is a general state vector that solves (1.20), x,, is state vector that solves (1.20) at the nominal

trajectory and dx is a vector of variables at the environment of x,,.
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The vector of variables x, to calculate by the algebraic equations (1.21) at the nominal

trajectory, is also the sum of a nominal component and a deviation component:

Xq = Xq, + 6%, (2.10)

Where x4, x4, are the set of algebraic variables for the general solution and for the nominal trajectory

respectively, §x, is the vector of algebraic variables at the environment of x,, .

According to the linearization approach, the nonlinear variations have to be approximated by

their parts, which are linear with respect to dt in Taylor series expansion:

Ax = 6x 2.11)

Ax, = 6x,

Where §x and §x, are vectors at the environment of the nominal trajectory of the system state and of

the algebraic-variables respectively, 4x, Ax,, are linear approximation of 6x, 6x, respectively.
Differentiation of (2.9) yields x = x,, + §x. Substitution of x,, + §x at the left of (1.24) yields:
X + 8% = f(x, + 6x,ar, + 6ar, am, + 8ay) (2.12)

Where x,, is a nominal trajectory state vector, éx is a state vector of a deviation, f is functions-vector
RHS of (1.20), ar,, and §ar are target acceleration of nominal trajectory and of a deviation, a,, and

da,, are missile acceleration of nominal trajectory and of a deviation.

Function £ in (2.12) can be expressed by a Taylor series with respect to x,,:

of (z of (z
X + 6% = f(2)|;=5, + % -Ax + ;:E ) -Aag
_ T |,
“=in =i 2.13
+ of@ -Aa,,, + HOT ( )
oam | _, m

Where z stands for the set of arguments z = (x, ar, a,,) and z,, stands for the nominal form of this set
of arguments z, = (xy, ar,, am,,) % is an operator of differentiation with respect to a variable ¢ (e

may be each of the arguments of z), f is the RHS of (1.20), x,,, ar,,, ap,,, are the variables and inputs at

the nominal trajectory, and Ax, Aar, Aa,, are linear approximations of éx, dar, da,, — the state vector

and inputs of a deviation from the nominal trajectory, acronym HOT stands for Higher Order Terms.
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Taylor series (2.13), is an expansion of the set of functions f (1.24) (1.20) about the nominal
trajectory (2.6). In (2.13), only the first derivative (for each one of the arguments) appears

explicitly, higher derivatives are given implicitly by HOT (Higher Order Terms).

Since we seek linear approximation to &x, terms higher than the first derivative are not of
interest, therefore HOT will be omitted. In addition, the term f(z)|,-, , Ii.e.
f(x,ar, am)|x.ar.am=xn.arn,amn’ in (2.13), is in fact x,,. Considering these and (2.11), (2.13)
becomes:

_ Of(x, aT! am)

A
x 0x

- Ax

X,a7,Am=Xn,AT n,Amy

af(x, ar, am)

+ -
aaT

X,aT,Am=Xn,aT n’amn
01 X, ar,a
+ M

Wi|
oa,, m

X,07,Am=Xn,0T 1, mp,

Where Ax is linear approximation of §x, the time-derivative of a deviation from the nominal trajectory

. . - . . .
Xp, 5o isan operator of differentiation with respect to a variable € (¢ = x or ar or a,,), f(x, ar, a,,) is

RHS of (1.20), x,,, ar,,, an,,, are the state vector and inputs of the nominal trajectory, and Ax, dar, Aa,,

are linear approximation of 8x, Sar, da,, — the state vector and inputs of a deviation from the nominal

trajectory.

of (x,ar,am)

in (2.14) is first-order partial derivative of the functions-vector f (1.24) of (1.20),

with respect to each variable in the state vector x. After the differentiations, the variables in the

of (x,ar,
f(xaTam) and
ar

expressions have to be replaced by their nominal values. By the same manner

of (x,ar,am)
dam

are first-order partial derivatives of the functions-vector f with respect to a; and
a,, respectively.

Function that involves 6 or § has to be substituted first with the RHS of the variable. For
example, the first function in (1.20) is p = fi(x, ar, a,,) = vy - cos @ — v, - cos §, its partial
derivative with respect to x, = A will therefore be:

3fy _ 0[vr - cos(yr = A) = U - €0 (Y — )]

oA daA

= vr - sin(yr = A) = vy - sin(ym — 1)

(2.15)
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Where % is an operator of differentiation with respect to a variable ¢, f; = p, 4 is the LOS angle, vy

and v,, target and missile velocities, y and y,, are their angles respectively.

Substitution of the nominal variables, in this case only the nominal algebraic variables 6,, =

6, and &,, = &, provides the coefficient of Ax, for the linearized function of x;:

0f1

—_— = vr - SinBy — v, - Sin b,
0x, 1,

a=Xan
’ (2.16)
= vr - sinfy — vy, - sin [sin‘1 (sin(eo) v_T)] =0
m

Where % is differentiation of f; with respect to x,, f; = p is the first function in the RHS of (1.20),
2

xq is the vector of the dependent variables of algebraic equations (1.21), x,, is the vector x, at the

nominal trajectory, v, and vy, target and missile velocities, 6, is the target aspect angle at time ¢, and

& is the missile lead angle at time t.

The coefficient of Ax, in the linearized function f; happens to be zero. Similar process, when
applied to the rest of the coefficients of f; and to all the other functions, yields the final form
of (2.14), which by including the terms of the missile dynamics is given by the following set
of linearized differential equations:

Axy = —vr-SinB, - Axy + vy - sin 6, - Axs
A.’).CZ = AX3
c c
AQ'Cg =_'AX3 +_T‘AaT—_m‘Cd ‘Axd
tgo tgo go

. (2.17)
Ax, = — - Aar
Ur

Axs =a cCq - Axg

Axy = Ay - Axy + by - Aa,
Where subscript n stands for nominal, subscript d stands for dynamics, [Axy,...,4x5] =
[4p, A, Aw, Ayr, Ay,,] are the linearized state variables, Ax; € R™*1 is the state vector of the missile
dynamics with state matrix A; € R™™ and vectors b; € R™*1, ¢; € R¥*", Aa, and Aay are inputs of
the missile acceleration and the target acceleration respectively, c; = cos 6, /v, and ¢,, = cos 6, /v,
are constant coefficients, ¢, is the remaining time to collision (time-to-go), v, is the constant closing
velocity, v and v, target and missile constant velocity magnitudes, 8,, initial target aspect angle and

&, initial ideal missile lead angle.
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The constant coefficients cr, ¢,, are given by:

cos 0,
CT = o
c
_ cos &, (2.18)
Cm = o

Where ¢y is the constant coefficient of 4a; and c,, is the constant coefficient of 4a, with the missile
dynamics, 6, = 6, is the target initial aspect angle and §,, is the missile ideal lead angle, v, is the

closing velocity.

Linearization of vector x, of the algebraic variables yields:

460 = Ay, — A4
A6 =4y, — A2 (2.19)
da, =N v, - Aw

Where 486 is the target linearized aspect angle and A6 missile linearized lead angle, Ay, and A4y, are
target and missile linearized path angles respectively, 44 linearized LOS angle, 4a, is linearized
acceleration command needed to perform by the control system, N constant navigation gain, v, missile

velocity and Aw the linearized line of sight angle rate.

Where 4x, = x, remained with no change because the already linear form of the equations. In
practice 46 and AS need not be calculated. These variables are replaced by their nominal
constant values 6,, and &,,. 6, is the initial target aspect angle, and &,, is the initial missile ideal

lead angle, with no error.

The terms t,4, and v, in (2.17) and (2.18) are products of the linear motion about which the
linearization is done. As shown in section 2.1, in collision-course conditions the trajectories of
the target and the missile are straight lines that are about to meet, where the time to collision is

a function of the instantaneous range and the constant closing velocity.

The terms to find the parameters at the right hand side of (2.17) are collected from previous
equations:
Qn = 90

Op = Sin_l(Sin(en) : vT/vm) = 8o — Oerr

V. = VU - €0S 8, — Uy - cOS 6,

cr =cos 8, /v, (2.20)
Cm = €0S 6, [V,

tr = Po/ Ve

tgo =t —t

29



Where subscript n stands for nominal, subscript 0 denotes initial time t,, 6 target aspect angle and &
missile lead angle, &, initial heading error, v,,, missile constant velocity magnitude, v target constant
velocity magnitude, v, closing velocity, ¢ and ¢, are constant coefficients, ¢, is time-to-go, ¢ is the

flight time, t is the time that elapsed since the initial time t, p line of sight range.

From (2.9), initial conditions for (2.17) are found by calculating the difference of the general

solution and the nominal trajectory (2.6):

X1, =0

Xz, =0

x3, = (r - sinBy — vy - 5in o) /(v - tf) (2.21)
X40 =

X5, = 6err

xdo =

Where x, € R(*3)*1 js the initial conditions vector of the linearized system (2.17), p, line of sight
range at time t,, v and v, target and missile velocities, 6, is the target aspect angle at time t, and &,
is the missile lead angle at time t, 6., initial heading error — the deviation of the missile lead angle

from the correct direction (see 1.9), x, state vector of missile dynamics of nt* order.

2.4. Linear System — Examples

The systems that will be used to demonstrate the linearization appear in the following
equations. As described in section 2.3, approximation of the nonlinear state is composed of two
parts, nominal part and a linearized deviation. Therefore for each system here, the solution of

the nominal reference is given as well as the differential equations of the linearized deviation.

Parameters and conditions of the nonlinear examples 1.5 still hold.
Ideal Dynamics

Algebraic calculations for the reference and the linear system:

971 = 90

5n = 50 - 5err

ATL = /10

v, =400 - cos 6, — 200 - cos 0, (2.22)

cr = cos 6, /v,
Cm = C0S 8, /U,
tr = Po/Vc
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tgo =tr—t

Supporting calculations:

Po = xTO

Ao = sin~1(r, /p) =0

wo = (200 - sin B, — 400 - sin &y) /xr, (2.23)
Y1, = 0o

Ymy = Sin_l[(Sin 90)/2] + Serr
Reference System

System equations:

X1 =V th

xZ = ATL

x3=0 (224)
X4_ = Hn + /1n

X5 = 671 + ATL

Linear System
Differential equations:

X, = —200-sin6, - x4, + 200 -sin 8, - xs

X, = X3

X3 =2-Xx3/tgo — Cm - Ac/tgo (2.25)
X, =0

Xs = a./400

Initial conditions:

X, =0

Xy, =0

x3, = (200 - sin 6, — 400 - sin 8y) / (v, - tf) (2.26)
X4y =0

X5y = Serr

1%t Order Dynamics

Based on the first order transfer function:

1

Qp=——-a
moTn,es+1 C

(2.27)
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Where a,,, is the missile actual acceleration at the lateral plane, a, PN command, s Laplace transform

variable and 7, time-constant of the missile dynamics.

Reference System
System equations:

X1 =V th

Xy = ATL

X3 =0 (2.28)
Xq4 = GTL + An

X5 = 671 + An

x6 =0

Linear System
Differential equations:

X, = —200-sin6, - x4 + 200 -sinf, - xs

X, = X3
X3 =2- x3/tgo —Cm - x6/tgo (2.29)
X, =0
X5 = x¢4/400
Xe = _x6/Tm + ac/Tm
Initial conditions:
X, =0
Xy, =0
x3, = (200 - sin 6, — 400 - sin §,) /(v - tf)
Xag =0 (2:30)
x50 = Serr
X6y = Am,

Example 1 — States Approximation

The purpose now is to examine the approximation of the linear states, most importantly p = x,
and w = x5, to their nonlinear values. The line of sight rate w according to the proportional
navigation law, is the feedback control state and its asymptotic behavior is a key factor for
stability in the sense of Lyapunov. p is the missile-target relative position and its final value
determines the miss distance. Without reliable approximation to these two, no significant

results can be achieved.

32



The simulation in the following examples ran the linear and nonlinear systems for ideal and

nonideal dynamics, for initial heading error &y, .

Relative Motion Trajectory

140 T T
m— nonlinear ideal
linear ideal
120 nonlinear 1% order 7 ) i
linear 1% order \
100 / \
> 60 / \ 1
20 '
0
0 500 1000 1500 2000
XRel (m)

Figure 2.3: Relative motion trajectories comparison of linear and nonlinear systems, for ideal system and for
first order dynamics.

The linearized states of the relative position (Figure 2.3) and the line of sight rate (Figure 2.4)
present very good approximation to their nonlinear values. In both figures a gap distinguishes
the nonideal (1% order) system from the ideal system. But the signals of the linear system follow

closely in time (Figure 2.4) and in position (Figure 2.3) to their original signals.

T F

m— ponlinear ideal
= linear ideal
nonlinear 1% order

linear 1% order

(deg/sec)

10
Time (sec)

Figure 2.4: Comparison of acceleration histories of linear and nonlinear systems, for ideal system and for first
order dynamics.
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Example 2 — Miss Distance

Now we will study the miss-distance estimations as provided by the linear system. Figure 2.5
displays the distance between the missile and target at the time of flyby, the time at which the
closing velocity changes direction from approaching to distancing, versus initial heading error

8erry- IN Order to achieve distinct results, the comparison has been done using a nonideal

dynamic system, in this case 1% order dynamics.

Miss Distance vs Heading Error

0.15 T
) —6— nonlinear
0.1 9\\ —*— linear i
0.05 \\k
g
8 0
=]
8 K
S .0.05 \
é \/e\?
D 4
-0.15
-0.2
-15 -10 -5 0 5 10 15

Initial Heading Error (deg)
Figure 2.5: Miss Distance comparison.

The miss distance achieved by the linear system reflects the original miss distance of the
nonlinear system very well. Recall the state of operation about which the linearization was

done is ideal, namely §,,,,, = 0, so it is obvious therefore that the better approximation will be

at the vicinity of that condition.

In the next chapter the linearized model will be the basis for the stability analysis of a guidance

system engaging proportional navigation.

2.5. Linear Model Overview

The relation of the missile and the target accelerations to the line of sight rate that was a concern
in section 1.4.1 and indicated by the operator T(t), is now termed explicitly with time-variable

coefficients, as indicated in the third equation in (2.17):

. 2 Ccr Cm
Ax3 = — - Ax3+—-Aar ——-c4 - Axy (217)
tgo tgo tgo
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Where [Ax4, ..., Axs] = [Ap, A, Aw, Ay, Ay,,] are the linearized state variables, Ax,; € R™*?! is the
state vector of the missile dynamics with state matrix A; € R™*" and vectors by € R™1, ¢; € R,
Aag is the input of the target acceleration, ¢; = cos 9, /v, and c,, = cos 6, /v,, are constant

coefficients, ¢y, is the remaining time to collision (time-to-go), v, constant closing velocity.
The leading term t,, = t; — t is the time-to-go, the remaining time to collision starting with
fixed point in time t; (see Figure 2.2).

Now, the linearized model (2.17) is presented schematically in Figure 2.6. In it we identify

three subsystems (each encompassed with a dashed line).

14
> 1/vy I Ty vy - Sin @,
ar
L p
> i/ > j Ym vy - sin 6, _[ >
W A
T(tgo) » [
am . aC
Dynamics [« N-v, <

Figure 2.6: Linearized model description with dashed lines mark the different subsystems.

The first subsystem appearing in Figure 2.6 is of the operator T(t). It is a closed loop about
x3 = w With w at the output. This subsystem is governed by equations (3) and (6) in (2.17).
We term this part the ‘closed-loop’ system.

The second subsystem begins with a,. and ends with x, = A. This system contains a single
integrator after the closed-loop (Recall that a, is the proportional navigation command a, =

N - v, - w). In (2.17), equation (2) forms this relation.

The third is the subsystem that begins with a,. and ends with x; = p. The behavior of this
system is the behavior of the missile-target range. After the closed-loop system, two integrators
appear in this subsystem. Contained in equations (1) and (5) in (2.17).
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Notice that the integrations of the second and the third subsystems cannot be separated or
deferred from the integration of the closed-loop system. That is, the overall system (2.17) has

to be integrated simultaneously.

The closed-loop system connects the missile acceleration command with the line of sight angle
rate derivative and it possesses the main stability properties of the system. Chapter 3 will be

devoted to the analysis of that subsystem.

As the final value of p forms the miss-distance, the third subsystem has significance in miss
distance analysis. But as this system has two integrators after the closed-loop system and the
second subsystem has only one, the stability of this subsystem cannot be examined separately

of the second. Chapter 4 will introduce the analysis of these two subsystems.

2.6. Summary

Chapter 2 developed the linearized model of the guidance system. It has been demonstrated
that collision-course conditions, which are an ideal state of the proportional navigation system,
can serve as basis for linearization. A linearized model in the form of ordinary linear differential
equations with time-varying parameters was derived. Examples for time histories of the states
and miss-distance results, demonstrated very good approximation with the exact nonlinear

model.
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3. Closed-Loop Analysis

The models for both nonlinear and linearized systems were developed in the previous chapters.
We now move on to analyze the stability of the system. In the following chapter an analysis of
the line of sight angle rate is given. This variable requires particular consideration because of
the special shape of its time-dependency. In the opening, an introduction about the problem,
later on is model rearrangement and finally analysis based on an extension to Lyapunov

stability theory.

3.1. The Stability Problem
3.1.1. The Linear Model

For the purpose of the discussion in this chapter let’s rewrite the final form of the linearized
guidance system developed in chapter 2, in terms of a state-space model:

Xy = —Vp-Sin@, - x4 +vr-sinf, - xs
).C‘2=x3
. 2 Cr Cm
X3=——+Xzg+—-ar——:Cq " Xq
tgo tgo go
: 1 (3.1)
x4:_'aT
Ur
. 1
Xg =— "Cq" X
5=, (Cata

J.Cd:Ad'xd‘de’ac

Where subscript n stands for nominal, subscript d stands for dynamics, [xy,...,xs5] = [p, 4, W, Y7, ¥in]
are the state variables, x; € R™*?! is the state vector of the missile dynamics with state matrix A, €
R™™ and vectors by € R™?, c; € R¥™™™, a, and a; are inputs of the missile acceleration and the target
acceleration respectively, ¢y = cos 8, /v, and ¢, = cos 8, /v, are constant coefficients, ¢, is the
remaining time to collision (time-to-go), v, is the constant closing velocity, v and v, target and missile

constant velocity magnitudes, 6,, initial target aspect angle and &,, initial ideal missile lead angle.

Solving equations (3.1) is subject to a preceding evaluation of the algebraic equations and the

following expressions:

a.=N- v, w
0, = 6, (3.2)
On = Sin_l(Sin(en) U /V;m) = 80 — Berr
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V. = VU, - €0S 6, — Uy - cOS 6,

cr = cos 6, /v,

Cm = €0S 6, [V,

tr = Po/ Ve

tgo =tp —t
Where subscript n stands for nominal, subscript 0 denotes initial time t,, a. is the acceleration
command needed to perform by the control system, N constant navigation gain, v,,, missile velocity and
w the line of sight angle rate, 6 target aspect angle and § missile lead angle, J,- initial heading error, v
target constant velocity magnitude, v, closing velocity, c; and ¢, are constant coefficients, ¢y, is the

time-to-go, t; is the flight time, ¢ is the time that elapsed since the initial time t,, p line of sight range.

Initial conditions for (3.1) are given by:

X1, =0

Xz, =0

x3, = (Ur - SiN By — V- Sin ) /(v - tf) (3.3)
Xg, =

X5, = 6err

Xg, =

Where x, € R™+5)%1 js the initial conditions vector of system (3.1), vy and v, target and missile
velocities, 6, is the target aspect angle at time t, and J, is the missile lead angle at time t,, &, initial
heading error — the deviation of the missile lead angle from the correct direction (see 1.9), x, state

vector of missile dynamics of n*" order, v, is the constant closing velocity and ¢ is the flight time.

A note about initial conditions: According to Lyapunov, we do not take into account the initial
state (3.3) of the system. The theory allows assuming any initial state x, € R™**1 taken
arbitrarily in a small neighborhood of the origin (in the linear case, the vicinity of zero has no

limits).

3.1.2. Stability Analysis of Time-Varying Systems

The concept of Lyapunov-stability for time-varying systems is an extension to the fundamental
Lyapunov theory. Like the fundamental case, stability of a time-varying system defined around
an equilibrium point. If the initial conditions may be selected independently of ¢, the system

is said to be uniformly stable in the sense of Lyapunov.
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Lyapunov function for time-varying systems usually has to include a time variable within it

and then the time-derivative of the function consists of explicit terms of t:

Jv(x,t)
at

v(x(t),t) = + Vu(x, t) - f(x(t),t) (3.4)

. . . d . . . .
Where v is the Lyapunov function, x(t) is the state vector, 5 18 the time derivative operator, V is the

gradient with respect to the state variables of x(t), f is a functions-vector representing the derivatives

of x(t), t time variable.

v(x, t) is a Lyapunov function of a system around an equilibrium point, if it is positive definite
ont > 0and v(x(t),t) < 0. Asitis often difficult to find a Lyapunov function for a system,
in the case of a guidance system it is actually impossible, since the function candidate to be
Lyapunov and its first order partial derivatives, have to be defined and continuous over the all
interval t > 0, a condition that cannot be applicable to (3.1) because the system has a singular

point at t = tr and is not defined for later times.

3.1.3. Sectorial Method Analyses

Previous works studied the stability of proportional navigation systems using sectorial methods
such as the Popov criterion [8] and the Circle criterion [11]. In these methods the nonlinear
part of the system, denoted by a continuous function ¢(y), where y feedback state vector,

belongs to a sector [k4, k,] [12]:

y#+0 ﬁklﬁgﬁkz (3.5)

By assigning ¢ (y) with the time-varying part of the linearized guidance model, the sector of
time in which the ‘system remains finite-time stable’ is found. As a result, sufficient conditions
to stability are derived:

N>2

o > =N - R[G(iw)/iw] (3.6)

tg

Where R implies real part, N is the navigation gain, t,, time-to-go, G (iw) missile subsystems transfer

function, w frequency domain variable, i is the imaginary number.

According to (3.6), for a missile represented by a 15¢ order transfer function with time-
constant 7,, = 0.5 secand gain N = 4, the system remains stable for every t;, < —4-

(—0.5) = 2 sec., but no longer.
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Similar results that provide conditions to stability in terms of the smallest stable time t,,, or

smallest stable range p, generated by a customary approach of engineers to freeze the system

in different times along the process and to apply standard tools as if the system were an LTI

[2].

3.1.4. Differential Equations with Terminal
Singular Point

The stability question is sometimes confused with the question of successful interception. The
problem the designer of a missile faces is to hit a target in a given range within a given time.
And if the system is stable, then the line of sight rate will remain bounded and the missile
should meet the target. Then maybe it is a matter of some given parameters, that the stability
has to be examined with respect to them. In this case the flight time is fixed and there is no

sense in talking about asymptotic stability.

But if the question of stability is examined in the broad sense, then it has to query the guidance
system character, as to whether it is stable or not. Namely, for the general interception problem
of a guidance system, represented in a parametric manner, whether it is stable or not. In that
sense, meaning to asymptotic stability exists, because if the state vector norm decreases with
respect to an increase of the target range, which is equivalent to an increase in flight time, then
the system is asymptotic-stable for sure. The problem for each individual interception then will
be to find the appropriate conditions for launching. In this regard then, stability does finally

provide an answer to the question of performances.

System (3.1) is time-varying. But the varying coefficients of (3.1) are not simple factors of
time, rather they depend inversely on time-to-go (1/t,, = 1/(tr — t)), which implies that the
process is limited within a finite time t; (see Figure 2.2), and as time elapses, and tg4,

approaches 0, the time variables go to infinity.

The presence of ¢, in the dominator creates a terminal (final-time) singular point in the system
model. Mathematically it makes the set of equations (3.1) a complicated form of ordinary
differential equations and the orthodox approaches to investigate time-varying systems are
therefore not applicable in this case. In fact only a theory of ordinary linear differential
equations with terminal singular point, may provide results that do justice to the unique form

of the system.
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Accordingly we seek to analyze the stability of the guidance loop of a missile employing
proportional navigation by querying the linearized model (3.1), and to do so while taking into

account the characters of the model, which is time-varying and has a terminal singular point.

The problem of the stability here is to find the guidance system parameters that guarantee that

the state vector of (3.1) remains bounded, or better, asymptotically converges, over the flight.

However, as the terminal singular point of the model indicates, and is evident by the geometry
of the pursuit, as the missile approaches the target, the line of sight angle-rate tends to diverge.
Then a final divergence is a natural result of the guidance system.

Regarding that, an additional effort has to be made in order to consider the final moment in the
analysis. In the next section an approach is presented that meets the requirements to analyze

system (3.1).

3.2. Barabanov - Skorokhod Approach

An approach to the theory of linear systems with a regular singular point at the end of the
process was introduced by Barabanov and Skorokhod [13] [14]. In their papers the analyzed

system has the following mathematical model:

x=F-x+g-L
tgo 3.7)

y=h-x

Where x,x € R™*?! are the analyzed system state vector and its derivative, F € R™", g € R™*1, h €
R*™ are the system state matrix and vectors, y is a state feedback control input, tgo =ty —tis the

remained time to end of the process (time-to-go. ¢ total process time, t time variable).
State matrix F and vectors g and h in (3.7) are constant and F has left half-plane eigenvalues,
with a possible exception for one zero.

The analysis of systems such as (3.7), according to the Barabanov - Skorokhod approach, is
performed by exploring the behavior of the system for non-bounded increase of the process

time-length (t; — oo), using an extension to Lyapunov theorem.

Based on this concept, Definition 1 and Definition 2 below were introduced by Barabanov [13].
The definitions make use of the following symbols:

x(t) Time-variable state vector of the analyzed system
Xo Initial conditions of state vector x(t)
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||| Euclidean norm of vector x

tr Total flight time of a single process
tgo Time-to-go, remained time to collision
a Positive constant
T, Positive constant
Ty Positive constant

Definition 1

System (3.7) is uniformly stable (uniformly bounded) if there exists a positive constant @ > 0,

such that the inequality

Xl < a - |lxoll (3.8)
holds for every 0 < t < ¢ — 74, where 7, is an arbitrary positive constant.
Definition 2

System (3.7) is asymptotically stable, if it is uniformly stable and for any two positive

constants, 0 < 7; < 15, the system state |[x(t)|| approaches zero as ty — o, where:

71 < tgo < %) (39)
Notes on Definition 1 and Definition 2:

n.1. The time parameters and chronological order in Definition 1 and Definition 2 may be

elucidated with Figure 3.1:

(%)

Figure 3.1: Timing illustration for Definition 1 and Definition 2. The labels below the line indicate a regular
forward progressing timeline; the labels above indicate a reverse order timeline.

n.2. The arbitrary constant & > 0 does not depend on t;.

n.3. The arbitrary positive constant 7; was introduced in Definition 1 to avoid the analysis of

the system in the neighborhood of the singular point t;, = 0. By that gap, all the
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statements about the system exclude the final moment, where the missile guidance is

practically uncontrollable. See Figure 3.1 for illustration.

n.4. The free variable that progresses asymptotically here is t; rather than t. Since the
guidance process holds between t; and 0, for each process ¢ is bounded over that interval

of time. Moreover, Definition 2 states that a missile is regarded asymptotically stable, on

condition that on time interval (3.9), vector norm |[x|| decreases for an increment of ¢;.

n.5. Thus, the Barabanov - Skorokhod approach to stability of the closed-loop system in the
sense of Lyapunov, means that its state is bounded (tends toward zero) for a non-bounded

increase of the flight time (t; — o).

In the next section we are going to organize the system states to correspond with the

mathematical form of model (3.7).

3.3. Model Rearrangement

In order to bring system (3.1) to the appropriate form as required by the Barabanov - Skorokhod
approach, a linear transformation has to be performed. But first, we seek to simplify the system

by reducing its order, as suggested in the form of a number of equations in (3.1).

3.3.1. Order Reduction

First let’s assume a non-maneuvering target. Since stability in the sense of Lyapunov is

unaffected by the target acceleration, we henceforth put [7]:

ar =0 (3.10)
Where ay is target acceleration input.
This allows us to omit x, in (3.1) and replace x, with x, = 0.

Recall also that the guidance acceleration command is given by the PN law (1.14):
ac=N v, w (1.14)

Where a, is a lateral acceleration command needed to perform by the control system, N constant

navigation gain, v,,, missile velocity and w the line of sight angle rate.

And let (1.14) replace a. in the equations.
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Regarding these, (3.1) becomes:

X, = vr-Ssin@, - xg

Xy = X3
: 2 Cm
X3 =T X3~ CaXq
tgo tgo (3.11)
. 1
X5 =— *Cq " Xq
m

xd:Ad'xd‘de‘aC

Where subscript n stands for nominal, subscript d stands for dynamics, [xq,x,,x3,x5] = [p, 4, @, V]
are the state variables, x; € R™*?! is the state vector of the missile dynamics with state matrix A, €
R™™ and vectors by € R™1, c; € RY™™, a, input of the missile acceleration, c,, = cos &, /v, is a
constant coefficient, ¢4, is the remaining time to collision (time-to-go), v, is the constant closing

velocity, v, missile constant velocity magnitude, 6,, initial target aspect angle and §,, initial ideal

missile lead angle.

Now, as shown in section 2.5 and in Figure 2.6, three different subsystems can be distinguished
in (3.11). With the internal numbering of the equations in (3.11) the subsystems are: one, the
closed-loop system, governed by equations (3) and (5); two, a subsystem that begins with x; =
w and ends with x, = 4, equation (2) forms this relation; three, a subsystem that begins with

a,, and ends with x; = p, in equations (1) and (4).

The closed-loop system connects the missile acceleration command with the line of sight angle-
rate derivative and it possesses the main stability properties of the system. Therefore, this part

is of our interest in the current chapter.
The next chapter will be devoted to the analysis of the two other subsystems.

Regarding all that, the final form to serve as the basis for the transformation in the next section

is summed-up by the following:

) 2 cos &,
X=—- X “Cq X
tgo U tge o C (3.12)

xdzAd'xd+bd'N‘Um‘X

Where subscript n stands for nominal, subscript d stands for dynamics, x = w is the LOS rate state
variable, x; € R™1 is the state vector of the missile dynamics with state matrix A; € R™™ and vectors
by € R™1, ¢, € RY*™, tgo 1S the remaining time to collision (time-to-go), v,,, missile constant velocity

magnitude, &,, initial ideal missile lead angle, N constant navigation gain.
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With initial conditions x, € R™*D*1 and the following expressions:

8p = sin (sin(By) - vr/Vm) = 8o — Serr

fgo =ty — 1t (3.13)

ty = Po/Vc
V. = Uy, - €0S 8, — vy - coS O,

Where subscript n stands for nominal, subscript 0 denotes initial time t, v,,, missile velocity, & missile
lead angle, &, initial heading error, v target constant velocity magnitude, v, closing velocity, ¢y, is

time-to-go, t; is the flight time, ¢ is the time that elapsed since the initial time t,, p line of sight range.
Let x and x4 be unified with a single state vector x_

xde

_ [;;] € Rn+ix1 (3.14)

Where x4, € R™***1 is unified state vector, x = w is the LOS rate state variable, x; € R™*! is the

state vector of the missile dynamics.

3.3.2. Linear Transformation

The following notation is valid for the equations in the section:

Ay n X n state matrix of the missile dynamics
ac Missile lateral acceleration input command
am Missile lateral output acceleration

b, n X 1 input vector of the missile dynamics
Cq 1 X n output vector of the missile dynamics
Cy Constant (cos &, /vim)

I Unit matrix of order n

N Navigation gain

N’ Adjusted navigation gain

1) Integration variable

s Laplace variable

t Time variable

T, n+ 1 xn+ 1 linear transformation matrix
Um Missile velocity

x LOS rate state variable (w)

Xo Initial condition of the LOS rate

Xg n X 1 state vector of missile dynamics

X, n X 1 initial conditions vector of x,

Xe n + 1 x 1 extended state vector

z n X 1 new state vector

Z n X 1 initial conditions vector of z

Z, n + 1 X 1 extended equivalent state vector
Zg n + 1 X 1 initial conditions vector of z,

System (3.12) can attain the mathematical form of (3.7) by the following linear transformation.
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Based on the properties of the state transition matrix, vector x; of the missile dynamics in

(3.12) can be represented by the integral form:

t

xd(t) = eAd't . xdo + N . Um . f eAd'(t_(p) . bd . x((p) . d(p (3 15)
0 .

Letu = x(p)and dv = N - v, - e4aE=®) . p, . dg, integration by parts gives:

xq(t) = et - xg — N vy -x(t) Az - bg+ N vy - xp - et - A7

t 3.16
.bd_l_N.vm.j-eAd'(t_(p).Aal.bd.x((p).d(p ( )
0

Define the new variable z:

z(t) = et (xg, + N - vy - %0 - Ag" - by)

t 3.17
+N.Um.feAd'(t_(P).Aal.bd.x((p).d(p ( )

0

In terms of z(t), x4 (t) is given by:
xq(t) = z(t) = N - v, - x(t) - A7 - by (3.18)

z(t) in (3.17) is given in the general form of system-state response in terms of the matrix

exponential e“4t. From this general form, the set of state equations for z(t) is extracted as:

z(t) = Ag - z(t) + N - v, - x(t) - A7 - by

3.19
Z0=xd0+N'Um'X0‘Aal'bd ( )

Substitution of (3.18) and (3.19) back to (3.12) yields:

2 On -
£(E) = x(0) = g (20) = N v X(0) - 45" bo) 520
go m " Lgo .

z(t) = Ag - z(t) + N - v, - x(t) - A7 - by
Equivalently:

(0 2 © + cos &y, N - x(0) A1 cos &y, ©
x —_ — x . . x . C . . —_— . C . Z
tgo tgo @ty (3.21)

z(t) =N - vy, - x(t) - A7 - by + Ag - z(t)

With initial conditions x, € R*** for x and zy = x4, + N - vy, - o - Az" - bg € R™* for z.

Recall (1.17), the overall gain of the guidance loop has to preserve the navigation gain:
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—cg Ay by =1 (1.17)

Define the adjusted navigation gain:

N' =cosé, N (3.22)

And let another constant:

cos &y [V = Cy (3.23)
c, is scalar. Its inverse representation as v,,,/ cos 8, = c; ! is just for presentation purposes.

(3.21) takes the form:

!

C0) — () = o
x(t) = — x(t) 0, z(t) (3.24)

z(t) =c; - N"-x(t) - A7 - by + Ag - z(t)

Withxoandzo:xd0+C;1.N’.xO-AC—11.bd

With the substitution of x(t) and some arrangement, the equivalent form of (3.12) is given by:

_ 2—N' Cy
x(t) = -x(t) — cCa - z(t)
o o v (3.25)
zt) =Ag - z)+—-z@®) +c;t-— - (2—N")-Az' - by - x(t)
tgo tgo

And initial conditions x, and x4, + ¢;* - N’ - xo - Ag" - by.

x and z can be unified with a single state vector z,:

ze =[] e Xt (3.26)
The relation of x; and z as it appears in (3.18) can be expressed through the transformation
matrix T,:
Ze =T, - x, (3.27)
Where:
_ 1 0--0 n+ixn+1
Te‘(N-vm-Agl-bd . )eR (3.28)

Since the determinant of T, is nonzero (det T, = 1), matrix T, is nonsingular, having only
time-constant parameters, systems (3.12) and (3.25) are internally equivalent with the same

dynamic characteristics.
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The next theorem analyzes the stability of system (3.25) whose state vector is the unified vector
Ze.
3.4. System Analysis
Theorem 1
Let system (3.12) be represented in form (3.25), if

c.1l. The dynamic matrix A, is Hurwitz, and
c2. N'>2

Then the system is asymptotically stable in the sense of Definition 2.

Remark: Condition c.1 derives straightforwardly from the requirement of the system to be
transformed into (3.25). Condition c.2 derives from inequality (3.41) and is well known for

stability of proportional navigation systems [8] [7] [11].

Proof

The proof for stability of the equivalent system (3.25) is based on the Lyapunov candidate

function:
v(z,) = x2(t) + zT(t) - H - z(¢t) (3.29)

Where v(z,) is a scalar function of vector argument z,, z, € R"*V*1 is the state vector of the
equivalent system (3.25) with initials vector z,,, x € R**! is the LOS rate state, z € R™*" is a state
vector in the equivalent system (3.25) (superscript T stands for the transformation operator), and H is

the solution of the Lyapunov equation:

AL H+H-A;=—-4-1 (3.30)

Where A; € R™™ is state matrix of the missile dynamics and is the time invariant part of z(t), I is unit

matrix of order n.

The notations used for (3.29), (3.30), with the following, are valid for the rest of the section:

a; j =1, 2 extremum functions of Lyapunov inequality terms
b, n X 1 input vector of the missile dynamics
Cq 1 X n output vector of the missile dynamics

48



Cy Constant (cos 6, /vp)

A j = 1..n eigenvalues of matrix H

N’ Adjusted navigation gain

tr Total flight time

tgo Time-to-go, remained time to collision
Ty Positive — time index — constant

T, Positive — time index — constant

U Missile velocity

v; j = 1,2,3 temporal auxiliary functions

Let’s take the time derivative of Lyapunov function v:

v=2-x-x+2.-2T.H-z (3.31)

Substitution of x and z of the equivalent system (3.25) and arranging the terms in ascending

order with respect to z yield:

2—N' c
17:2 .x2_2._v.x.cd.z
tgo go
-1 N’ T -1
$2060 (2= N x 2T H At by (3.32)
go

N’
+2-—-z"-H-z+2-2" -H-Ay -z
go

The linear terms in z and those which are factors of 1/¢,4, are aimed now to be replaced with

equivalent quadratic expressions as implied by v; to vs:

T
C'U CU CU
U1=ZT'Z+2'ZT'—'X'C£+<—'x‘C£> ~<—~x-c£

o g0 90 (3.33)
c c
=<z+—v x-c£> -<Z+—Ux c£>20
go tgo
T 1 N, T 1
v,=2z +-z—2-¢c, -—-(2—-N')-x-z"'-H-A7;" - by
tgo
N’ r
+<c,;1-t—-(2—N’)-x-H-A;l-bd> (3.34)
go
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N’ !

=lz—c' — . (2—=N")-x-H-A31-b

=\Z Cy t ( )X d d
go

-1 N’ ! -1
-(z—cv -t—-(Z—N)-x-H-Ad -bd>20
go

T
N’ N’ N’

‘U3=ZT'Z—2'—'ZT'H'Z+<—'H'Z> '<—'H'Z>
tgo tgo tgo

N’ ’ N’
=\z——H-z| -\z——H-z|=0
tgo tgo

Substitution of v, , 3 with the subtraction of the extra terms brings us to the following form of

(3.35)

the Lyapunov derivative:

2—N’ X\
v=2- -xz—v1+zT-z+< v) Ca-Cq—vy+2z" -z
tgo tgo
N’ ’
+{cgt-—-@2=N")-x| -(H-Az' - b)T
t (3.36)

I\ 2

-(H-Agl-bd)—v3+zT-z+<t—> -(H-2)T-(H-2)
go

+2-zT -H-Ay z

Now, the last term in (3.36) equals the left-hand side of the Lyapunov equation (3.30) that can
be introduced here to yield:

2—N' X-c
V=—v,—V,—v3—2Z z+2- -x2+< v) cd-cg
tgo tgo

, 2
+ c‘l-i-(Z—N’)-x “(H-A7'-by)T
Y g a 7d (3.37)

2
N
-(H-Agl-bd)+<t—) -(z"-HT -H - 2)

go

From this last step let’s withdraw the first three non-negative terms to arrive at the following

inequality:
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v

2
2—N’ X-c

< —zl-z+2: -x2+< v) Cq-Ch
tgo tgo

-1 N, : -1 T -1 N, : (338)
+<c,, -t—-(Z—N’)-x> (H- A7 by)T - (H - A -bd)+<t—>

go go
-(zT -HT -H - 2)

Which holds for any time on the interval (for further details on the relation of t,, and 7, see

section 3.2):

0<17; < tgo (3.39)

The following steps are intended for the simplification of the inequality form of (3.38).

The first simplification uses these positions:
1. 0< 21 £A,...< A, are the eigenvalues of matrix H, based on the properties of H as

symmetric and positive, they exist:

0<A -zl z<zl H-z<A,-z'-z (3.40)
2. Conditionc.2 (N'>2o0orN'—2 > 0).
3. T4 S tgo

Applying these three, the first two terms in (3.38) reduce to the form:

N' =2 1 N' —2
-zl z—-2- x2<——-2z""H-z -2 - x?
tgo /111 tgo
t
—f" 2zl H-z—2-(N'"—2)-x?
— n
t
i g0 (3.41)
_A_l zIl 'H-z—2-(N'—2)-x?
< n
tgo
T v(x
< —mm(—l,Z-(N’ 2)) (xe)
An tgo
Let’s denote this last term with:
T
o, = min (A—lz C(N'—2) ) (3.42)
n
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Second simplification, pertaining the last three terms in (3.38), is achieved by determining
their supremum with:

12

C
)
A

azzmax< 2.cq-Ch

(3.43)
+ (et N (2 _N'))Z S(H-Ag' - bg)" - (H - Ag' 'bd)>
When a, is multiplied by v(z,)/t7,.

Notice that since N’ > 2, according to condition c.2 of the theorem, the constants «; and a,
have positive values.

The first argument of (3.43) is a reduction of the last term of (3.38):

2 2
N’ zIT  H?>.z N'° zT .H.z
( ) (Z"-HTH-z) =N? ——— < —— = (3.44)
tgo tgo M tgo

All the above yields the final form of the Lyapunov inequality:

. a, o
0(z) < (=) - v(z) (3.45)
tZ  tgo
To solve (3.45), divide both sides by v(z,) and integrate with respect to t:
(L) [t \
(2, < K (tgo tf) . <%> - (Ze,) (3.46)
f
On 1, < tg,, v(z.) attains a boundary by strengthening the main inequality solution (3.46)
with:
az
max v(z,) < e™ - v(z,,) (3.47)

T1 Stgo

Which approves the system is uniformly stable in the sense of Definition 1.

On 1, < ty, < 15, v(2.) attains asymptotic convergence, with respect to t¢, by strengthening

(3.46) with:

a2 %) *
max v(z,) <e’ - <t_> V(Ze,) (3.48)
f

Tlﬁtgos'[z
Which approves the system is asymptotically stable in the sense of Definition 2.

Hence, Theorem 1 is proven.
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Derivations from Theorem 1 — Numerical Analysis

During the proof of Theorem 1 the constants a; and a, were derived. The conditions prove
their values to be positive. Finally these constants determine both the inequalities for uniform
stability and for asymptotic stability. Therefore it is important, from a system design point of
view, to analyze the properties of the stability results in terms of these constants and their

dependence on the system parameters.

Let: 7, = 0.1,7, = 1, N’ = 3. With these substitutions, (3.42) becomes:

o =— (3.49)

Where a; positive constant and A,, highest eigenvalue of matrix H — the solution of the Lyapunov

equation (see 3.30).

As inequality (3.48) states, the asymptotic convergence with respect to t, grows with powers
of a;. It is simple therefore to see that the rate of convergence is a function of the system

parameters that solve the Lyapunov equation (3.30).

For a first example let A, be a state-matrix of a first order system:

1

Tm

Where A, state-matrix of a first order system and t,,, is a positive time constant.

As 1, > 0 the system is Hurwitz. Solving (3.30) gives H = 2 - 1,,,, Which is also the maximum

and the only eigenvalue; the change of a; with change of z,,, is shown in Figure 3.2:
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Figure 3.2: a, Vs t,,, for 1% order system
At the points 1, = 2 - t,,, = 0.1,0.5, 1, the values of a; are 0.5,0.1,0.05 respectively. For
g
these values of a;, the expression (ti) which determines the rate of convergence for the
f

system appears in Figure 3.3:

(/)%
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HH
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T (s)
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0
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b

Figure 3.3: Convergence rate vs ty vs a; for 1* order system

According to Figure 3.3 the convergence is obviously faster for higher values of a;, which

happen for shorter time constants z,,,.

In the second example a missile with dynamics of second order is engaged. Now A, is given
by:
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=0t —2oc-an) (3:51)

Where A, state matrix of second order system, w,, natural frequency and ¢ damping ratio.

Here again positive w,, and ¢ prove left-half poles, whereas the solution of the Lyapunov

equation (3.30) is now more complicated:
/ 1+4-P+w? 2 \
Z'QM w%
H= 3.52
2 1+ w? | (3.52)
i Tt

Where H is the solution of Lyapunov equation (3.30), w,, natural frequency and ¢ damping ratio.

To examine a; with change of ¢ we set w,, = 1 r/s. The results are illustrated in Figure 3.4:

alwq
0.016

0.014 //
0.012

0.01 /

S 0.008
0.006

0.004 /
0.002 /

0 02 04 0.6 0.8 1
¢

Figure 3.4: a, vs ¢ for 2" order system

As presented earlier, the higher a; provides better results in terms of quick convergence. Then
a natural candidate-point for best performance is = 0.8, where the line in Figure 3.4 reaches its

maximum.

The performances of the system with respect to ¢ = 0.8, and for comparison purposes also { =
0.2 and ¢ = 1, appear in Figure 3.5. Since the rate of convergence of the second order system
is quite lower with respect to the first order, then the range of values in Figure 3.5 is focused

in the region where variations of the function take place.
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Figure 3.5: Convergence vs tf vs a, for 2" order system

Indeed, ¢ = 0.8 provides best results in terms of asymptotic convergence.

The analysis of the stability as exemplified here, and was derived from the results of the
extended Lyapunov approach, is a powerful tool for the design of guidance systems, as it
provides a straightforward indication not only to the system stability but also for best

parameters selection in terms of rate of convergence.

3.5. Summary

Chapter 3 introduced the analysis of the guidance system with an extended approach of
Lyapunov stability. This approach was found significant because it provides tools to investigate
time-varying systems which present a singular point. Based on that method we investigated the
principle equation of the linearized system, namely the relation of the acceleration command
to the line of sight rate derivative. Now that this problematic subsystem proved to have
conditions for asymptotic stability, we can move to the next chapter to consider the other

relations of the acceleration command and the system states.

56



4. Miss Distance Analysis

The differential equation that connects the missile acceleration command with the line of sight
rate was investigated in the previous chapter and was found to have conditions for attaining
asymptotic stability. Still there remains to consider the other states, which can be viewed as
system output, since their final values determine the miss distance. To complete this
investigation, the following chapter introduces stability-analysis of the subsystem that

possesses the missile-target relative position.

4.1. Miss Distance Evaluation

The ultimate objective of a guided missile is to disable or destroy the target. But inaccuracies,
limitations and time-lags affect the missile as to flying close to the target but not necessarily
hitting it directly. With the help of high explosives, near misses can be converted to successful
intercepts. For that reason the guidance system has to cause the miss-distance to be as small as
possible. To produce reliable evaluation of the performance of the guidance system the miss-

distance measure and the exact time that it occurs, have to be considered separately.

4.1.1. Computational Procedure

When running an ideal system the moment in which the simulation should stop is easily
evaluated. As we saw in section 2.1 when ideal conditions exist the total flight time is linear

with respect to the distance to the target:
tr = po/Vc (2.5)

Where t; is the flight time from the measure of the range until collision, p, line of sight range at fixed

moment ¢,, v, closing velocity.

But for the general case the conditions to stop the guidance must get real-time inputs of the
distance to the target to announce miss-distance time. In addition, the way to measure the miss-
distance is at the most a question of the interception objective. However, the view common for
everyone is that the missile guidance has to close, as much as possible, the distance separating
it with the target. Then the criterion at the most general level, for stopping the guidance

simulation, is based on the definition that states that the miss-distance is the closest approach
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of the missile to the target. An equivalent definition can be found in the Military Handbook of

Missile Flight Simulation® and the drawing in Figure 4.1 was borrowed from there.

Another important challenge is the accuracy of the miss-distance calculation in the numerical
simulation. As already shown extensively, the system introduces a singular point in the vicinity
of the impact point. Numerically it is a major source of errors and the treatment of it depends

on the engaged model and the simulation platform.

Relative Target Position at
Next to Last Computation
Relative Target Time (negative range rate)
Position at
Minimum Range
Relative Target Position at
Last Computation Time
(positive range rate)
Vs

(R'“Vrm)uVr/u

Path of Target
Relative to Missile

Missile

Figure 4.1: Miss-distance vector diagram (taken from Military Handbook of Missile Flight Simulation). The
descriptions in the handbook for the symbols in the illustration are: M, miss distance vector at time of closet
approach directed from missile to target, R range vector, uy,. M unit vector in direction of relative velocity

vector Vzy.
In the view of computational procedure, the miss-distance in the sense that is given above,
occurs when the line of sight vector r (see equation (1.2)) reaches a minimum. Applying it
includes cyclic calculation of the range rate p and catching the time of sign-changing, namely
the time when the range changes from decreasing to increasing. This procedure serves us to

analyze the miss-distance in the following sections.

1 Missile Flight Simulation Part One Surface-to-Air Missiles, MIL-HDBK-1211(MI) 17 July 1995. In: Military
Handbook. 1995

58



4.1.2. Miss Distance Output

Let’s now return to section 3.3 where some arrangement provided us with the following form
of the linearized system:

5C1 = UT 'Sinen 'XS

562=X3
: 2 Cm
X3 =T X3~ CaXq
tgo tgo (4.1)
. 1
Xg=— Cq-X
5 Vo d d

xd:Ad'xd‘de‘ac

Where subscript n stands for nominal, subscript d stands for dynamics, [xq,x,,x3,x5] = [p, 4, W, V]
are the state variables, x; € R™*?! is the state vector of the missile dynamics with state matrix A, €
R™™ and vectors b; € R™1, ¢; € R™, a. input of the missile acceleration, c,, = cos &, /v, is a
constant coefficient, ¢4, is the remaining time to collision (time-to-go), v, is the constant closing

velocity, v, missile constant velocity magnitude, 6,, initial target aspect angle and §,, initial ideal
missile lead angle.

Initial conditions to (4.1) are given by:

X1, =0

Xy, =0

X3, = (vr - sinBy — vy, - sin &) / (v, - tr) 4.2)
X4y =0

X5y = Serr

Xq, =0

Where x, € R(*3)*1 s the initial conditions vector of system to (4.1) , v and v,, target and missile
velocities, 6, is the target aspect angle at time t, and J, is the missile lead angle at time t,, 8., initial
heading error — the deviation of the missile lead angle from the correct direction (see 1.9), x, state

vector of missile dynamics of nt" order, v, is the constant closing velocity and ty is the flight time.

(4.2) possesses the vector of initial conditions for (4.1) but in chapter 2 it was shown that for
numerical analysis of the linear system, the reference solution about which the linearization

was done, has to be summed with the solution of (4.1) (4.2).

Examining (4.1), we distinguished three subsystems that share some variables with each other:

the closed-loop system — that includes all the factors of t4,, from the missile acceleration to
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the line of sight angle rate w. A second subsystem from w to A. A third subsystem from a,, to
p. The second and third subsystems contain a single integrator and two integrators in the output
of the closed-loop system respectively. Then even though it was shown in the previous chapter
that the closed-loop system with w within, is asymptotically stable, that it is not yet guaranteed
that the third system, containing the missile-target range p, is stable. Even the stability of the
second system containing A is uncertain. On the other hand the integration units are not
sufficient conditions to deny its stability, since the system is time-varying, the laws of time-

invariant systems are not applicable to it.

For each subsystem at the output of the closed-loop system we will try to determine stability
in an input-output sense and we’ll do that by numerical simulation, by determining the input
and inspecting y = A and y = p at the outputs. The theoretical basis for the analysis is given

in the following definitions.

4.2. Input — Output Stability

Recall the nomenclature:

t Time variable
tr Total flight time of a single process
tgo ty — t, Time-to-go, remaining time to collision
Ty Positive constant
T, Positive constant (t, > 1)
Definition 1

System (4.1) is input-output stable from input u to output y if its own motion remains bounded

on the time interval 7, < ty, < 7, as ty — oo.

Definition 2

System (4.1) is asymptotically stable from input u to output y if it is input-output stable and its

own motion tends to zero on the time interval 7; < t,, < 7, as t; — .

Notes on Definition 1 and Definition 2:
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n.1. The notion of the time parameters t,, t,, was illustrated in Figure 3.1 (section 3.2). Recall
also that as elucidated there, a single unit of time in the process is the time-length of a
flight, therefore the sequence of final values y = x(t;) with respect to the flight-times ¢,

is the process we want to test.
n.2. Inputin Definition 1 and Definition 2 refers to any input signal or set of initial conditions.
It should be noted that any initial condition x,, , can be represented as an input signal by:

U= Ly Xy - 6(2) (4.3)

Where u is an input signal equivalent to the desired initial condition, I,,, is the m-th column of the unit
matrix, xp, , is the desired initial condition of the m-th variable, §(¢) is the Dirac delta function, ¢ time

variable.
When the input is of initial conditions type, the sense of own motion of a system is its
reaction to initial conditions, i.e. its free response.

n.3. In the following tests the miss-distance analysis is performed with respect to an input

which is initial conditions.

4.2.1. Miss Distance Analysis

Following Definition 1 and Definition 2, let the system input be any initial conditions vector

u = x, such that the initial state of x5 = y,, is nonzero, x5, = 8., # 0.

Referring back to the early chapters, é,,. is the deviation of the missile velocity from collision
course with the target. x5, = 8., # 0 also means x;, = w, # 0 but from a physical point of

view the deviation from collision course is led by an error in the velocity direction.

Initial heading error is one of the main theoretical problems in missiles guidance. Target
maneuvering and high-order dynamics are also central in this regard. The proposed analysis
when examined with output y = p(t) explores the miss-distance with respect to heading error.

The dynamics problem also finds an answer here. In opposition, the target in the following

investigations is assumed as non-maneuvering.
15t Heading Error
Let:
Sery = —15° (4.4)
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Where 6., is the heading error.

And let the system output be the sequence of last line of sight angles y = A(t;), for unbounded

increase of tr.

The importance of the system behavior with respect to this output, arises from its position one
integrator after the closed-loop system, for which conditions to asymptotic stability were found
in the previous chapter. Lack of conditions for stability of that subsystem makes useless the
search for stability conditions of the system with output y = p(tf), which possesses two

integrators after the closed-loop system.

Accordingly, Figure 4.2 presents the final LOS angle for increasing initial range, which is
equivalent to an increment in t, for &, = —15°, and for three orders of dynamics of the
linearized model. To view the results with respect to zero, the theoretical value of the LOS

angle at t; was subtracted from the results of the simulation.

At
800 T T T T
° = Ideal
%
B Ist order
600 | @ o 2nd order | |
400 - b
s 200 7 b
on
9]
)
0 L
-200
-400 b
-600 1 1 I I
0 5 10 15 20 25

Flight Time (s)

Figure 4.2: Final LOS angle with respect to ¢, for heading error &,,. = —15°, for ideal dynamics and dynamics
of 1stand 2" order, linear system.

Figure 4.2 shows that the response of the system in the transition-time is characterized by the

dynamics part. It also shows that as the flight time increases the system converges into a small

value around zero. But the important question is the behavior around zero, adherence to zero

means the system is asymptotic stable and otherwise, not. With that regard, in Figure 4.3 is

displayed a focused view of Figure 4.2, in an arbitrary interval of time, after the initial

overshoot.
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Figure 4.3: Focused view of the final LOS angle with respect to ¢ for heading error &, = —15°.

By Figure 4.3 it is straightforwardly concluded that system (4.1) is asymptotic stable with
respect to input xs and output y = A(ty).

Let now the output be the miss-distance for increasing flight times, y = p(t;). In Figure 4.4

are displayed results for 6,,,- = —15°, for three orders of dynamics of the linearized model.

0.6
m— deal
—— Ist order
O4%FE &0 o---- 2nd order |

miss distance (m)
]
1

-0.6 1 1 1 1
0 5 10 15 20 25

Flight Time (s)

Figure 4.4: Miss-distance with respect to ¢, for heading error &,,,, = —15°, for ideal dynamics and dynamics of
1t and 2" order, linear system.

63



Figure 4.4 presents that the miss-distance, for each order of missile dynamics, converges to a
small value close to zero, but not zero. A small constant gain, keeps the miss-distance from

zero that two integrators cannot close.

Figure 4.4 shows that system (4.1) is stable with respect to input u = x, with x5 = —15° and

output y = p(ts), but not asymptotic stable with respect to the same conditions.

2"d Heading Error
Additional tests will be performed now for second heading error. Let:

Oerr = —7.5° (4.5)
Where 8., is the heading error.

Figure 4.5 and Figure 4.6 introduce the performances of the system with respect to y = A(t;)
and y = p(ty) respectively. Figure 4.5 shows that similarly to the first heading error the system

is asymptotic stable with respect to the LOS angle. Figure 4.6 shows that with respect to the

miss distance the system is stable but not asymptotic stable.
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Figure 4.5: Final LOS angle with respect to ¢, for heading error &,,,, = —7.5°, for ideal dynamics and dynamics
of 1stand 2" order, linear system.
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Figure 4.6: Miss distance with respect to t; for heading error &,,,, = —7.5°, for ideal dynamics and dynamics of
1t and 2" order, linear system.

Let a third heading error, &,,,- = —30. Figure 4.7 introduces the miss distance with respect to

the three different heading errors for linear system with ideal dynamics.

The steady state is our interest, which indicates that as the absolute value of the input is smaller
so the constant error in the output is smaller, i.e. smaller miss-distance. Then the system with
respect to miss distance output is stable about input &, # 0 and is bounded with respect to a

bounded change of the same input.
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Figure 4.7: Miss distance comparison for three different heading errors.
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This is to note, the improvement of the results, or at least the preservation of the results, with
respect to increase in flight time, which is equivalent to an increase of the range to target,
reflects the stability characteristic of the guidance system. In general the performances of a
missile may deteriorate with the increase in target range, because effects that were not
considered here, such as combustion time and friction forces that slow the velocity down. In
this case the conditions between one run to another are no longer similar and the stable

character of the system becomes obscured by other phenomena.

4.2.2. Summary

Chapter 4 introduced an analysis of the guidance system with respect to miss-distance. A
program based on the linearized model as developed in chapter 2, simulated the system in a
series of conditions, distinct from each other by an increase of target range. It was demonstrated
that for a given heading error serves as input, and miss distance as output, the system is stable
in an input-output sense. It was also demonstrated that with respect to the same conditions the

system is not asymptotic stable.
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n.l.

n.2.

n.3.

n.4.

n.s.

n.6.

Summary and Conclusions

The above work studies guidance systems employing a proportional navigation (PN)
control law. The stability characteristics of the guidance system are at the center of the
study. Starting with missile-target motion and ending with actual lateral acceleration of
the missile, the guidance loop includes kinematics, guidance law and missile dynamics,

each of them imposes its unique character on the overall system.

The reference trajectory used for linearization is ideal collision-triangle conditions where
the missile and the target travel in constant velocities, in straight lines. The derived model

is time-varying.

In the linearized model it is possible to distinguish an LTI part, which consists of the
missile dynamics and the linearized kinematics, and time-varying part, consisting of a
closed-loop about the LOS rate. The time-varying part depends on inverse terms of ¢,
which introduce a singular point at the vicinity of the impact point. Furthermore, two
integrators separate the most interesting variable, i.e. the missile-target range, from the

time-varying subsystem.

Conditions for asymptotic stability of the closed-loop subsystem, from the acceleration
command to the line of sight (LOS) angle rate w, are obtained. Due to the singular point
that is present in w’s derivative, the stability of the system is investigated by an extended
approach to Lyapunov, which examines stability of closed-loop systems with respect to
unbounded increase of the total time t;. To apply this approach, the system has been

transformed linearly to an equivalent form, as required by the theory.

Numerical simulation examined the stability of the overall system. Stability here is in
input-output sense and it reflects the behavior of the miss-distance. While the results
prove initial convergence of the miss-distance with respect to an ascending initial target
range, later on the miss-distance oscillates about some small constants, where it is hard
to determine what part of it is a natural response of the system and what is contributed
by numerical errors. This is the weakness of the numerical analysis. But this approach

was employed here because of the irrelevance of other methods.

The results of the investigations so far indicate that asymptotic stability with respect to
miss-distance in input-output sense, may actually be achieved with some compensation

for the second integrator in the series after the closed-loop subsystem. The study of this
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n.s.

n.g.

feedback loop is not of the scope of the work but most of the material required for its

development is given here.

While an asymptotic convergence of the miss-distance is not guaranteed, it was
demonstrated to be bounded. Together with an analytic tool to adjust the rate of
convergence of the acceleration command, the designer is provided with an advanced

tool to develop the guidance system.

The results derived in the work are applicable to pure proportional navigation (PPN), and
even though the relative proximity of the true proportional navigation (TPN) version, the
equations of motion should differ when the acceleration command is exerted not only in
the normal component of the velocity, and the case then has to be considered separately.
Regarding that, there are more difficult versions of PN, as the different biased commands,
as Shneydor surveys in chapter 7 of his book, which definitely cannot be concluded from

this work by similarity, and they require a study of their own.

Finally, all the different subsystems of the missile as seeker and autopilot are considered
here by linear time-invariant dynamics. In fact many of the challenges that a designer
faces are in biases, saturations and other nonlinearities of the sensors and of the seeker
above all. The treatment to this kind of errors, is in general within a complete solution
which considers not just stability but also state-estimation and adaptive or optimal control

elements in the guidance system.
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Appendix 1

The numerical analyses and the examples in this research are based on proportional navigation
guidance simulation. The simulation program is written in Matlab and makes use of ode45 for
the calculation of derivatives in the nonlinear model and ode23s in the linear model.

The simulation suggests two options for missile dynamics — ideal and first order, both given in
terms of state-space models. User input sets the initial conditions of the target initial range and
the missile initial heading error with respect to the line of sight.

Selective parts of the nonlinear model simulation are submitted here to the reader.

Initialization

o©

Time-Constant Parameters

o° o

Deg2Rad = pi / 180;

o©

Input Initialization

o
°
o
°

xTO = rng0;

yTO = 0;

xMO = 0;

yMO = 0;

deltaErr= deltakErrDeg * Deg2Rad;

% Initial Values of State Vector and Algebraic Variables

% X = [1-Rmt, 2-Lam, 3-Omg, 4-GamT, 5-GamM, 6-aM]

% Algebraic Variables

% Alg = [1l-aMc,2-Del,3-Thet, 4-vC]

Rmt 0 = sqgrt ((xTO - xM0) "2 + (yTO - yMO)"2); X (1)
LamO = asin((yT0O - yMO) /RmtO0) ; X (2)
ThetO = TheTDeg * Deg2Rad; $A1lg(3)
GamTO = Lam0O + ThetO; %X (4)
DelCorrect = asin(vT / vM * sin (GamT0 - Lam0)) ;

DelO = DelCorrect + deltaErr; $Alg(2)
GamMO0 = Lam0 + DelO; X (5)
Oomg0 = (vT * sin(Thet0) - vM * sin(DelO)) / Rmt0; %X (3)
aM = 0; X (6)
vCO = -(vT * cos(Thet0) - vM * cos(Del0)); $Alg (4)
aMcO = N * vM * OmgO; $Alg (1)

if abs(aMc0O / 9.8) >= AccMaxG, aMc0 = AccMaxG * 9.8 * sign(aMc0); end

X0 = [Rmt0; Lam0O; Omg0O; GamTO; GamMO; aM];

AlgO0 = [aMcO; DelO; ThetO; vCO];

tk = 0;

bf = 1; % before flyby flag

rr = 0; % negative range rate flag
kk = 0;

n = length (X0) ;

Guidance Cycle
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% Simulation Cycle

o\

Rmt = RmtO;
hwait = waitbar (0, 'Please wait...");
while bf

waitbar ((Rmt0 - Rmt) / Rmt0, hwait)

kk = kk + 1;
tspan(l, kk) = tk;
Xspan(:, kk) = Xk;
Algspan(:, kk) = Algk;

[~, Xspank] = oded45 (@dX PPN NL lord, [tk, tk + Ts], Xk,
OptODE) ;

Xk = Xspank(end, :)';

% X = [1-Rmt,2-Lam, 3-Omg, 4-GamT, 5-GamM, 6-aM]
Rmt = Xk (1) ;

Lam = Xk (2);

Omg = Xk (3);

GamT = Xk (4);

GamM = Xk (5);

aM = Xk (6) ;

% Alg = [l-aMc,2-Del,3-Thet, 4-vC]

Del = GamM - Lam;

Thet = GamT - Lam;

vC = -(vT * cos(Thet) - vM * cos(Del));
aMc = N * vM * Omg;

if abs(aMc / 9.8) >= AccMaxG, aMc = AccMaxG * 9.8 * sign(aMc); end
Algk = [aMc, Del, Thet, vC];

o)

% range rate for miss distance

Rdot = (abs (Rmt) - abs(Xspan(l, kk))) / Ts;
if rr ==
if rdot < O
rr = 1; % first time of negative range rate
end
else

if rdot >= 0
bf = 0; % non—-negative range rate after period of
negative range rate
end
end

o

°

tk = tk + Ts;
end S%while

Derivatives Calculation

o\

function dx = dX PPN NL lord(~, Xx)
%$Calculation of State Vector Derivatives
% for Nonlinear Relative Motion Model

% with First Order Dynamics

o\°



% Model State Vector

% X = [1-Rmt, 2-Lam, 3-Omg, 4-GamT, 5-GamM, 6-aM]
% Algebraic Variables
% Alg = [l-aMc, 2-Del, 3-Thet, 4-vC]
$ X = [1-Rmt,2-Lam, 3-Omg, 4-GamT, 5-GamM, 6-aM]
dx = zeros(n, 1);
rho = x(1);
lambda = x(2);
omega = x(3);
gammaT = x (4) ;
gammaM = x(5) ;
am = x(6);
% Alg = [l-aMc,2-Del,3-Thet, 4-vC]
aMc = Algk (1) ;
Del = Algk(2);
Thet = Algk (3);
vC = Algk (4) ;
dx (1) = vT * cos(Thet) - vM * cos(Del);
dx (2) = omega;
x1l s = max (abs (rho), 1000) * sign(rho);
dx (3) = -2 * (vT * cos(Thet) - vM * cos(Del)) * omega / xl1 s
+ aT * cos(Thet) / x1 s - am * cos(Del) / x1 s;
dx (4) = aT / vT;
dx (5) = am / vM;
dx (6) = (-am + aMc) / tauM;

end

Miss Distance Calculation

tspan = tspan(l, 1 : kk);

t fin = tspan(l, kk);

Xspan = Xspan(:, 1 : kk);

Algspan = Algspan(:, 1 : kk);

% miss distance

miss = Xspan(l, end) * sin(Xspan(2, end));

fprintf ('Mis dist.=%6.5g (m) t fin=%6.5g (sec)\n', miss, t fin)
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